terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition

Abstract

In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

In 2021 season, the total volatile composition (sum of free and glycosidically fractions) showed a trend to increase in R vs RP in Garnacha and Mencía cultivars due to the bound-glicosidically fraction. In contrast, Syrah cultivar showed a higher total concentration in RP than R. In 2022, a higher total concentration was observed in RP vs R for all cultivars with exception of Garnacha. These increases were motivated by bound-glicosidically fraction except to Tempranillo cultivar where the free fraction increased in RP vs R. In general, in 2022 season the soil recharge irrigation had a positive effect on musts volatile concentration. The results showed a higher effect of the variety and season than the irrigation strategy.

Acknowledgements: Project PID2019-105039RR-C4 for financing. We also thank to ICVV analytical service (Drs. Fernández, Morata and Pérez).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Vilanova M.1,6, Costa B.S.1, Uriarte D., Moreno D., Yuste J., Martínez-Porro D., Montoro A., Torija I., Cancela J.J.5,6

1 Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (Spain)
2 Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (Spain)
3 Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (Spain)
4 Instituto Técnico Agronómico Provincial, 02007 Albacete (Spain)
5 Universidade de Santiago de Compostela – EPSE, 27002 Lugo (Spain)
6 CropQuality: Crop Stresses and Their Effects on Quality, Associate Unit USC-CSIC (ICVV)

Contact the author*

Keywords

volatiles, deficit irrigation, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.