terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition

Abstract

In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

In 2021 season, the total volatile composition (sum of free and glycosidically fractions) showed a trend to increase in R vs RP in Garnacha and Mencía cultivars due to the bound-glicosidically fraction. In contrast, Syrah cultivar showed a higher total concentration in RP than R. In 2022, a higher total concentration was observed in RP vs R for all cultivars with exception of Garnacha. These increases were motivated by bound-glicosidically fraction except to Tempranillo cultivar where the free fraction increased in RP vs R. In general, in 2022 season the soil recharge irrigation had a positive effect on musts volatile concentration. The results showed a higher effect of the variety and season than the irrigation strategy.

Acknowledgements: Project PID2019-105039RR-C4 for financing. We also thank to ICVV analytical service (Drs. Fernández, Morata and Pérez).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Vilanova M.1,6, Costa B.S.1, Uriarte D., Moreno D., Yuste J., Martínez-Porro D., Montoro A., Torija I., Cancela J.J.5,6

1 Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (Spain)
2 Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (Spain)
3 Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (Spain)
4 Instituto Técnico Agronómico Provincial, 02007 Albacete (Spain)
5 Universidade de Santiago de Compostela – EPSE, 27002 Lugo (Spain)
6 CropQuality: Crop Stresses and Their Effects on Quality, Associate Unit USC-CSIC (ICVV)

Contact the author*

Keywords

volatiles, deficit irrigation, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.