terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of irrigation in cover cropping vineyards

Effect of irrigation in cover cropping vineyards

Abstract

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.

However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

The objective of this work is focused on studying the combined use of irrigation strategies together with the implantation of cover crops, analyzing its effect on the vegetative, productive and quality characteristics of must and wine. To determine the practice of irrigation, the measurement of stem water potential has been used as an indicator of the water status of the plant.

The essay has been raised with four treatments: tillage, tillage with irrigation, cover crop and cover crop with irrigation. The cover crop has consisted of a mixture of grasses and legumes.

The results obtained have shown that the covered treatments have offered a more pronounced water deficit than the tilled treatments, without this having been a limiting factor for the vine. Besides, irrigation has stimulated the effects of accumulation of organic acids, sugars and cations. Regarding the cover crop, it has achieved to reduce the vigour of the vine and has had a notable increase in the content of anthocyanins and polyphenols with respect to tilled treatments.

Acknowledgements: This work is part of the actions of the project “Sustainable viticultural strategies and practices for adaptation to climate change” (VITISAD), 65% co-financed by the European Regional Development Fund (ERDP) through the Interreg V-A Spain-France- Andorra (POCTEFA 2014-2020).

References: 

1)  Ibáñez S. (2015). Mantenimiento del suelo mediante cubiertas vegetales. Gobierno de La Rioja, Logroño. 168 pp.

2)  Ojeda H et al. (2006). Modelo para el control del estado hídrico del viñedo en función del tipo de vino buscado. XXIX Congreso Mundial de la Viña y el Vino. Logroño, 25-30 junio.

3)  Scholander P. et al. (1965). Sap pressure in vascular plants. Science. 148: 339-346.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sergio Ibáñez Pascual, Luis Rivacoba Gómez

Instituto de Ciencias de la Vid y del Vino (ICVV), Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author*

Keywords

water potential, water stress, legume, grass, competition, yield, photoassimilates

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).