terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of irrigation in cover cropping vineyards

Effect of irrigation in cover cropping vineyards

Abstract

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.

However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

The objective of this work is focused on studying the combined use of irrigation strategies together with the implantation of cover crops, analyzing its effect on the vegetative, productive and quality characteristics of must and wine. To determine the practice of irrigation, the measurement of stem water potential has been used as an indicator of the water status of the plant.

The essay has been raised with four treatments: tillage, tillage with irrigation, cover crop and cover crop with irrigation. The cover crop has consisted of a mixture of grasses and legumes.

The results obtained have shown that the covered treatments have offered a more pronounced water deficit than the tilled treatments, without this having been a limiting factor for the vine. Besides, irrigation has stimulated the effects of accumulation of organic acids, sugars and cations. Regarding the cover crop, it has achieved to reduce the vigour of the vine and has had a notable increase in the content of anthocyanins and polyphenols with respect to tilled treatments.

Acknowledgements: This work is part of the actions of the project “Sustainable viticultural strategies and practices for adaptation to climate change” (VITISAD), 65% co-financed by the European Regional Development Fund (ERDP) through the Interreg V-A Spain-France- Andorra (POCTEFA 2014-2020).

References: 

1)  Ibáñez S. (2015). Mantenimiento del suelo mediante cubiertas vegetales. Gobierno de La Rioja, Logroño. 168 pp.

2)  Ojeda H et al. (2006). Modelo para el control del estado hídrico del viñedo en función del tipo de vino buscado. XXIX Congreso Mundial de la Viña y el Vino. Logroño, 25-30 junio.

3)  Scholander P. et al. (1965). Sap pressure in vascular plants. Science. 148: 339-346.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sergio Ibáñez Pascual, Luis Rivacoba Gómez

Instituto de Ciencias de la Vid y del Vino (ICVV), Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author*

Keywords

water potential, water stress, legume, grass, competition, yield, photoassimilates

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.