terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of irrigation in cover cropping vineyards

Effect of irrigation in cover cropping vineyards

Abstract

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.

However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

The objective of this work is focused on studying the combined use of irrigation strategies together with the implantation of cover crops, analyzing its effect on the vegetative, productive and quality characteristics of must and wine. To determine the practice of irrigation, the measurement of stem water potential has been used as an indicator of the water status of the plant.

The essay has been raised with four treatments: tillage, tillage with irrigation, cover crop and cover crop with irrigation. The cover crop has consisted of a mixture of grasses and legumes.

The results obtained have shown that the covered treatments have offered a more pronounced water deficit than the tilled treatments, without this having been a limiting factor for the vine. Besides, irrigation has stimulated the effects of accumulation of organic acids, sugars and cations. Regarding the cover crop, it has achieved to reduce the vigour of the vine and has had a notable increase in the content of anthocyanins and polyphenols with respect to tilled treatments.

Acknowledgements: This work is part of the actions of the project “Sustainable viticultural strategies and practices for adaptation to climate change” (VITISAD), 65% co-financed by the European Regional Development Fund (ERDP) through the Interreg V-A Spain-France- Andorra (POCTEFA 2014-2020).

References: 

1)  Ibáñez S. (2015). Mantenimiento del suelo mediante cubiertas vegetales. Gobierno de La Rioja, Logroño. 168 pp.

2)  Ojeda H et al. (2006). Modelo para el control del estado hídrico del viñedo en función del tipo de vino buscado. XXIX Congreso Mundial de la Viña y el Vino. Logroño, 25-30 junio.

3)  Scholander P. et al. (1965). Sap pressure in vascular plants. Science. 148: 339-346.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sergio Ibáñez Pascual, Luis Rivacoba Gómez

Instituto de Ciencias de la Vid y del Vino (ICVV), Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author*

Keywords

water potential, water stress, legume, grass, competition, yield, photoassimilates

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.