terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of irrigation in cover cropping vineyards

Effect of irrigation in cover cropping vineyards

Abstract

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.

However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

The objective of this work is focused on studying the combined use of irrigation strategies together with the implantation of cover crops, analyzing its effect on the vegetative, productive and quality characteristics of must and wine. To determine the practice of irrigation, the measurement of stem water potential has been used as an indicator of the water status of the plant.

The essay has been raised with four treatments: tillage, tillage with irrigation, cover crop and cover crop with irrigation. The cover crop has consisted of a mixture of grasses and legumes.

The results obtained have shown that the covered treatments have offered a more pronounced water deficit than the tilled treatments, without this having been a limiting factor for the vine. Besides, irrigation has stimulated the effects of accumulation of organic acids, sugars and cations. Regarding the cover crop, it has achieved to reduce the vigour of the vine and has had a notable increase in the content of anthocyanins and polyphenols with respect to tilled treatments.

Acknowledgements: This work is part of the actions of the project “Sustainable viticultural strategies and practices for adaptation to climate change” (VITISAD), 65% co-financed by the European Regional Development Fund (ERDP) through the Interreg V-A Spain-France- Andorra (POCTEFA 2014-2020).

References: 

1)  Ibáñez S. (2015). Mantenimiento del suelo mediante cubiertas vegetales. Gobierno de La Rioja, Logroño. 168 pp.

2)  Ojeda H et al. (2006). Modelo para el control del estado hídrico del viñedo en función del tipo de vino buscado. XXIX Congreso Mundial de la Viña y el Vino. Logroño, 25-30 junio.

3)  Scholander P. et al. (1965). Sap pressure in vascular plants. Science. 148: 339-346.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sergio Ibáñez Pascual, Luis Rivacoba Gómez

Instituto de Ciencias de la Vid y del Vino (ICVV), Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author*

Keywords

water potential, water stress, legume, grass, competition, yield, photoassimilates

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.