terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of irrigation in cover cropping vineyards

Effect of irrigation in cover cropping vineyards

Abstract

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.

However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

The objective of this work is focused on studying the combined use of irrigation strategies together with the implantation of cover crops, analyzing its effect on the vegetative, productive and quality characteristics of must and wine. To determine the practice of irrigation, the measurement of stem water potential has been used as an indicator of the water status of the plant.

The essay has been raised with four treatments: tillage, tillage with irrigation, cover crop and cover crop with irrigation. The cover crop has consisted of a mixture of grasses and legumes.

The results obtained have shown that the covered treatments have offered a more pronounced water deficit than the tilled treatments, without this having been a limiting factor for the vine. Besides, irrigation has stimulated the effects of accumulation of organic acids, sugars and cations. Regarding the cover crop, it has achieved to reduce the vigour of the vine and has had a notable increase in the content of anthocyanins and polyphenols with respect to tilled treatments.

Acknowledgements: This work is part of the actions of the project “Sustainable viticultural strategies and practices for adaptation to climate change” (VITISAD), 65% co-financed by the European Regional Development Fund (ERDP) through the Interreg V-A Spain-France- Andorra (POCTEFA 2014-2020).

References: 

1)  Ibáñez S. (2015). Mantenimiento del suelo mediante cubiertas vegetales. Gobierno de La Rioja, Logroño. 168 pp.

2)  Ojeda H et al. (2006). Modelo para el control del estado hídrico del viñedo en función del tipo de vino buscado. XXIX Congreso Mundial de la Viña y el Vino. Logroño, 25-30 junio.

3)  Scholander P. et al. (1965). Sap pressure in vascular plants. Science. 148: 339-346.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sergio Ibáñez Pascual, Luis Rivacoba Gómez

Instituto de Ciencias de la Vid y del Vino (ICVV), Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author*

Keywords

water potential, water stress, legume, grass, competition, yield, photoassimilates

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.