terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Abstract

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm). Soil profile was described and analyzed in each vineyard. AWC was determined according to Saxton equations and the evolution of ASW was simulated for each plot and for the period 2010-2014 using the Vineyard-Soil-Irrigation Model (VSIM), considering soil properties and the weather conditions recorded in the study area. The results were calibrated and validated with field soil water measurements carried out in the same period. In addition, soil NO3 content (0-15 cm depth) was determined at bloom, N content in blade was determined at veraison, and yield, concentration of polyphenols and anthocyanins in must were determined at harvests from 2010 to 2014 vintages.

AWC ranged between 128.6 and 146.6 mm. In all vineyards, ASW was higher than 20 % of AWC (which denoted hydric stress absence). Considering the four vintages (n=16), soil nitrate was correlated with N content in Blade (r=0.762, p<0.01), berry weight (r=0.525, p<0.05), and yield (r=0.695, p<0.01), and negatively correlated with polyphenol (r=-0.767, p<0.01), anthocyanins (r=-0.799, p<0.01), and colour index (r=-0.674, p<0.01) in must. In conclusion, soil NO3 could be a suitable indicator to compare the potential quality of musts among vineyards with similar ACW.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Peregrina F.1*, Martínez-Vidaurre J.M.2, Pérez-Álvarez E.P2., Ramos C.3

1Departament Agricultural Production ETSIIAB, University Polytechnic of Madrid, Madrid, Spain
2Institute of Grapevine and Wine Sciences (CSIC-University of La Rioja-Government of La Rioja), Logroño, Spain
3Department of Environment and Soil Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain

Contact the author*

Keywords

soil nitrogen availability, available water holding capacity, grape quality, Tempranillo

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.