terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Abstract

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm). Soil profile was described and analyzed in each vineyard. AWC was determined according to Saxton equations and the evolution of ASW was simulated for each plot and for the period 2010-2014 using the Vineyard-Soil-Irrigation Model (VSIM), considering soil properties and the weather conditions recorded in the study area. The results were calibrated and validated with field soil water measurements carried out in the same period. In addition, soil NO3 content (0-15 cm depth) was determined at bloom, N content in blade was determined at veraison, and yield, concentration of polyphenols and anthocyanins in must were determined at harvests from 2010 to 2014 vintages.

AWC ranged between 128.6 and 146.6 mm. In all vineyards, ASW was higher than 20 % of AWC (which denoted hydric stress absence). Considering the four vintages (n=16), soil nitrate was correlated with N content in Blade (r=0.762, p<0.01), berry weight (r=0.525, p<0.05), and yield (r=0.695, p<0.01), and negatively correlated with polyphenol (r=-0.767, p<0.01), anthocyanins (r=-0.799, p<0.01), and colour index (r=-0.674, p<0.01) in must. In conclusion, soil NO3 could be a suitable indicator to compare the potential quality of musts among vineyards with similar ACW.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Peregrina F.1*, Martínez-Vidaurre J.M.2, Pérez-Álvarez E.P2., Ramos C.3

1Departament Agricultural Production ETSIIAB, University Polytechnic of Madrid, Madrid, Spain
2Institute of Grapevine and Wine Sciences (CSIC-University of La Rioja-Government of La Rioja), Logroño, Spain
3Department of Environment and Soil Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain

Contact the author*

Keywords

soil nitrogen availability, available water holding capacity, grape quality, Tempranillo

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.