terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Abstract

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm). Soil profile was described and analyzed in each vineyard. AWC was determined according to Saxton equations and the evolution of ASW was simulated for each plot and for the period 2010-2014 using the Vineyard-Soil-Irrigation Model (VSIM), considering soil properties and the weather conditions recorded in the study area. The results were calibrated and validated with field soil water measurements carried out in the same period. In addition, soil NO3 content (0-15 cm depth) was determined at bloom, N content in blade was determined at veraison, and yield, concentration of polyphenols and anthocyanins in must were determined at harvests from 2010 to 2014 vintages.

AWC ranged between 128.6 and 146.6 mm. In all vineyards, ASW was higher than 20 % of AWC (which denoted hydric stress absence). Considering the four vintages (n=16), soil nitrate was correlated with N content in Blade (r=0.762, p<0.01), berry weight (r=0.525, p<0.05), and yield (r=0.695, p<0.01), and negatively correlated with polyphenol (r=-0.767, p<0.01), anthocyanins (r=-0.799, p<0.01), and colour index (r=-0.674, p<0.01) in must. In conclusion, soil NO3 could be a suitable indicator to compare the potential quality of musts among vineyards with similar ACW.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Peregrina F.1*, Martínez-Vidaurre J.M.2, Pérez-Álvarez E.P2., Ramos C.3

1Departament Agricultural Production ETSIIAB, University Polytechnic of Madrid, Madrid, Spain
2Institute of Grapevine and Wine Sciences (CSIC-University of La Rioja-Government of La Rioja), Logroño, Spain
3Department of Environment and Soil Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain

Contact the author*

Keywords

soil nitrogen availability, available water holding capacity, grape quality, Tempranillo

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.