terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Abstract

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm). Soil profile was described and analyzed in each vineyard. AWC was determined according to Saxton equations and the evolution of ASW was simulated for each plot and for the period 2010-2014 using the Vineyard-Soil-Irrigation Model (VSIM), considering soil properties and the weather conditions recorded in the study area. The results were calibrated and validated with field soil water measurements carried out in the same period. In addition, soil NO3 content (0-15 cm depth) was determined at bloom, N content in blade was determined at veraison, and yield, concentration of polyphenols and anthocyanins in must were determined at harvests from 2010 to 2014 vintages.

AWC ranged between 128.6 and 146.6 mm. In all vineyards, ASW was higher than 20 % of AWC (which denoted hydric stress absence). Considering the four vintages (n=16), soil nitrate was correlated with N content in Blade (r=0.762, p<0.01), berry weight (r=0.525, p<0.05), and yield (r=0.695, p<0.01), and negatively correlated with polyphenol (r=-0.767, p<0.01), anthocyanins (r=-0.799, p<0.01), and colour index (r=-0.674, p<0.01) in must. In conclusion, soil NO3 could be a suitable indicator to compare the potential quality of musts among vineyards with similar ACW.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Peregrina F.1*, Martínez-Vidaurre J.M.2, Pérez-Álvarez E.P2., Ramos C.3

1Departament Agricultural Production ETSIIAB, University Polytechnic of Madrid, Madrid, Spain
2Institute of Grapevine and Wine Sciences (CSIC-University of La Rioja-Government of La Rioja), Logroño, Spain
3Department of Environment and Soil Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain

Contact the author*

Keywords

soil nitrogen availability, available water holding capacity, grape quality, Tempranillo

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.