terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Abstract

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm). Soil profile was described and analyzed in each vineyard. AWC was determined according to Saxton equations and the evolution of ASW was simulated for each plot and for the period 2010-2014 using the Vineyard-Soil-Irrigation Model (VSIM), considering soil properties and the weather conditions recorded in the study area. The results were calibrated and validated with field soil water measurements carried out in the same period. In addition, soil NO3 content (0-15 cm depth) was determined at bloom, N content in blade was determined at veraison, and yield, concentration of polyphenols and anthocyanins in must were determined at harvests from 2010 to 2014 vintages.

AWC ranged between 128.6 and 146.6 mm. In all vineyards, ASW was higher than 20 % of AWC (which denoted hydric stress absence). Considering the four vintages (n=16), soil nitrate was correlated with N content in Blade (r=0.762, p<0.01), berry weight (r=0.525, p<0.05), and yield (r=0.695, p<0.01), and negatively correlated with polyphenol (r=-0.767, p<0.01), anthocyanins (r=-0.799, p<0.01), and colour index (r=-0.674, p<0.01) in must. In conclusion, soil NO3 could be a suitable indicator to compare the potential quality of musts among vineyards with similar ACW.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Peregrina F.1*, Martínez-Vidaurre J.M.2, Pérez-Álvarez E.P2., Ramos C.3

1Departament Agricultural Production ETSIIAB, University Polytechnic of Madrid, Madrid, Spain
2Institute of Grapevine and Wine Sciences (CSIC-University of La Rioja-Government of La Rioja), Logroño, Spain
3Department of Environment and Soil Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain

Contact the author*

Keywords

soil nitrogen availability, available water holding capacity, grape quality, Tempranillo

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.