terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Abstract

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation. Nine plants per treatment were used to measure physiological parameters, yield, and must quality parameters. Additionally, soil microbial communities were analyzed by sequencing soil DNA from the 16S region (bacteria) and ITS region (fungi) using BeCrop® technology. The results showed that the inoculation did not lead to increased photosynthetic rates or improved water use efficiency. There were no significant differences in terms of yield or the sugar content and acidity of the must. However, berries from the inoculated plants exhibited higher total phenolic content and anthocyanin accumulation. The fungal diversity in the inoculated treatment was greater at the beginning of summer, but this difference was not observed at harvest. Moreover, there was no significant difference in bacterial diversity between the inoculated and non-inoculated soil throughout the season. This study emphasizes the importance of evaluating mycorrhiza-based fertilizers under real field conditions. Although the results confirm that inoculation improves phenolic maturity parameters such as anthocyanin content, the potential of these inoculants to mitigate the impacts of climate change and enhance plant performance in the field requires careful evaluation of specific cultivation conditions.

Acknowledgements: This work was supported by PID2021-125575OR-C22 project funded by MCIN/ AEI /10.13039/501100011033/ and FEDER Una manera de hacer Europa.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Josefina Bota*, Arantzazu Molins, Jaume Puigserver, Arnau Miralles, Elena Baraza

Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Balearic Islands, Spain.

Contact the author*

Keywords

arbuscular mycorrhizal fungi, Vitis vinifera, soil microbiome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.