terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Abstract

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation. Nine plants per treatment were used to measure physiological parameters, yield, and must quality parameters. Additionally, soil microbial communities were analyzed by sequencing soil DNA from the 16S region (bacteria) and ITS region (fungi) using BeCrop® technology. The results showed that the inoculation did not lead to increased photosynthetic rates or improved water use efficiency. There were no significant differences in terms of yield or the sugar content and acidity of the must. However, berries from the inoculated plants exhibited higher total phenolic content and anthocyanin accumulation. The fungal diversity in the inoculated treatment was greater at the beginning of summer, but this difference was not observed at harvest. Moreover, there was no significant difference in bacterial diversity between the inoculated and non-inoculated soil throughout the season. This study emphasizes the importance of evaluating mycorrhiza-based fertilizers under real field conditions. Although the results confirm that inoculation improves phenolic maturity parameters such as anthocyanin content, the potential of these inoculants to mitigate the impacts of climate change and enhance plant performance in the field requires careful evaluation of specific cultivation conditions.

Acknowledgements: This work was supported by PID2021-125575OR-C22 project funded by MCIN/ AEI /10.13039/501100011033/ and FEDER Una manera de hacer Europa.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Josefina Bota*, Arantzazu Molins, Jaume Puigserver, Arnau Miralles, Elena Baraza

Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Balearic Islands, Spain.

Contact the author*

Keywords

arbuscular mycorrhizal fungi, Vitis vinifera, soil microbiome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.