terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

Abstract

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards. A combined mixture of five herbs (Arenaria serpyllifolia, Thymus serpyllum, Potentilla argentea, Sedum acre, Sedum album) were planted (0,0625 m2 per plant) in the under-trellis area of two Lower Austrian vineyards in Rohrendorf (loess) and Zöbing (loess-sand). The research design involved a split-plot design with four plots, each plot with five vines. After 110 days plant performance and ground coverage were assessed on cover plant basis. The overall results showed promising growth rates of four out of five green cover species within the first year. The growth rates of T. serpyllum, P. argentea, S. acre, S. album ranged between 10,42-23,44% on both sites. A. serpyllifolia showed with 0,00-1,56% a reduced growth rate. Comparing the two sites, plant performance was higher in Rohrendorf with dominating loess, compared to Zöbing with increased sand content, potentially due to increased water and nutrient availability. Similarly, the results of the ground coverage showed differences with coverage rates of 12,15% in Rohrendorf and 3,68% in the Zöbing vineyards. In summary the study suggests a suitable site adaption of four analyzed green cover species in the first season. Further long-term experiments involving seeding techniques, grapevine interaction, soil analyses and additional green cover species are recommended.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Markus Eitle1*, Marlene Milan2, Sabine Plenk3

1 IMC University of Applied Sciences Krems, Department of Business, Institute of Tourism, Wine Business and Marketing, Krems, Austria
2 Research Institute of Organic Agriculture Germany FiBL, Department Sustainable Farming Systems, Frankfurt am Main, Germany
3 University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Landscape Architecture, Vienna, Austria

Contact the author*

Keywords

green cover, under-trellis, sustainable vineyard management, Austrian viticulture, biodiversity, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.