terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

Abstract

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards. A combined mixture of five herbs (Arenaria serpyllifolia, Thymus serpyllum, Potentilla argentea, Sedum acre, Sedum album) were planted (0,0625 m2 per plant) in the under-trellis area of two Lower Austrian vineyards in Rohrendorf (loess) and Zöbing (loess-sand). The research design involved a split-plot design with four plots, each plot with five vines. After 110 days plant performance and ground coverage were assessed on cover plant basis. The overall results showed promising growth rates of four out of five green cover species within the first year. The growth rates of T. serpyllum, P. argentea, S. acre, S. album ranged between 10,42-23,44% on both sites. A. serpyllifolia showed with 0,00-1,56% a reduced growth rate. Comparing the two sites, plant performance was higher in Rohrendorf with dominating loess, compared to Zöbing with increased sand content, potentially due to increased water and nutrient availability. Similarly, the results of the ground coverage showed differences with coverage rates of 12,15% in Rohrendorf and 3,68% in the Zöbing vineyards. In summary the study suggests a suitable site adaption of four analyzed green cover species in the first season. Further long-term experiments involving seeding techniques, grapevine interaction, soil analyses and additional green cover species are recommended.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Markus Eitle1*, Marlene Milan2, Sabine Plenk3

1 IMC University of Applied Sciences Krems, Department of Business, Institute of Tourism, Wine Business and Marketing, Krems, Austria
2 Research Institute of Organic Agriculture Germany FiBL, Department Sustainable Farming Systems, Frankfurt am Main, Germany
3 University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Landscape Architecture, Vienna, Austria

Contact the author*

Keywords

green cover, under-trellis, sustainable vineyard management, Austrian viticulture, biodiversity, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.