terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

Abstract

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards. A combined mixture of five herbs (Arenaria serpyllifolia, Thymus serpyllum, Potentilla argentea, Sedum acre, Sedum album) were planted (0,0625 m2 per plant) in the under-trellis area of two Lower Austrian vineyards in Rohrendorf (loess) and Zöbing (loess-sand). The research design involved a split-plot design with four plots, each plot with five vines. After 110 days plant performance and ground coverage were assessed on cover plant basis. The overall results showed promising growth rates of four out of five green cover species within the first year. The growth rates of T. serpyllum, P. argentea, S. acre, S. album ranged between 10,42-23,44% on both sites. A. serpyllifolia showed with 0,00-1,56% a reduced growth rate. Comparing the two sites, plant performance was higher in Rohrendorf with dominating loess, compared to Zöbing with increased sand content, potentially due to increased water and nutrient availability. Similarly, the results of the ground coverage showed differences with coverage rates of 12,15% in Rohrendorf and 3,68% in the Zöbing vineyards. In summary the study suggests a suitable site adaption of four analyzed green cover species in the first season. Further long-term experiments involving seeding techniques, grapevine interaction, soil analyses and additional green cover species are recommended.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Markus Eitle1*, Marlene Milan2, Sabine Plenk3

1 IMC University of Applied Sciences Krems, Department of Business, Institute of Tourism, Wine Business and Marketing, Krems, Austria
2 Research Institute of Organic Agriculture Germany FiBL, Department Sustainable Farming Systems, Frankfurt am Main, Germany
3 University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Landscape Architecture, Vienna, Austria

Contact the author*

Keywords

green cover, under-trellis, sustainable vineyard management, Austrian viticulture, biodiversity, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.