terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of Ca, Si and their combination on grape volatile composition

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Abstract

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition. The aim of this work was to evaluate the influence of Ca and Si foliar treatments, applied either as single elements or in combination, on volatile composition of Tempranillo grapes. All treatments were applied twice, at veraison and one week later. The foliar applications were performed in triplicate, in a randomized block design. The volatile composition was determined in the musts by headspace solid-phase microextraction (HS-SPME) and subsequent analysis by GC-MS. Tempranillo is a neutral aromatic variety, for this reason, on this work we have focused on terpenoids and C13 norisoprenoids, the two families most important regarding varietal aromas. Foliar application of Ca and Ca+Si enhanced p-cymene, geraniol, neral, and total terpenoids content in must with respect to control one. Ca+Si foliar treatment also improved limonene, α-terpineol, linalool, and nerol concentration in comparison with control must. Regarding C13 norisoprenoids, Ca+Si foliar application was the only treatment that increased (E)-β-damascenone, (Z)-β-damascenone, β-cyclocitral, TDN, methyl jasmonate, and total C13norisoprenoids with respect control must. Therefore, Ca+Si foliar application is a good tool to improve the varietal aromatic quality of Tempranillo grapes and it is economically feasible.

Acknowledgements: M. G.-L. thanks the UR for her Margarita Salas contract (European Union-Next GenerationEU). E.P. P.-Á. thanks the MICIU for her postdoctoral financial support (IJC2019-040502-I). Thanks to the company Tradecorp for supplying us with the silicon product.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. González-Lázaro1, I. Sáenz de Urturi1, S. Marín-San Román1, R. Murillo-Peña1, L.L. Torres-Díaz1, E.P. Pérez-Álvarez1, V. Fernández2, M. del Álamo-Sanza3T. Garde-Cerdán1

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos Km. 6. 26007 Logroño, Spain
2Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid. Ciudad Universitaria, s/n. 28040 Madrid, Spain
3
Grupo UVaMOX (Unidad Asociada del ICVV), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Avda. Madrid 50, 34001 Palencia

Contact the author*

Keywords

calcium, silicon, foliar application, terpenoids, norisoprenoids, grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.