terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of Ca, Si and their combination on grape volatile composition

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Abstract

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition. The aim of this work was to evaluate the influence of Ca and Si foliar treatments, applied either as single elements or in combination, on volatile composition of Tempranillo grapes. All treatments were applied twice, at veraison and one week later. The foliar applications were performed in triplicate, in a randomized block design. The volatile composition was determined in the musts by headspace solid-phase microextraction (HS-SPME) and subsequent analysis by GC-MS. Tempranillo is a neutral aromatic variety, for this reason, on this work we have focused on terpenoids and C13 norisoprenoids, the two families most important regarding varietal aromas. Foliar application of Ca and Ca+Si enhanced p-cymene, geraniol, neral, and total terpenoids content in must with respect to control one. Ca+Si foliar treatment also improved limonene, α-terpineol, linalool, and nerol concentration in comparison with control must. Regarding C13 norisoprenoids, Ca+Si foliar application was the only treatment that increased (E)-β-damascenone, (Z)-β-damascenone, β-cyclocitral, TDN, methyl jasmonate, and total C13norisoprenoids with respect control must. Therefore, Ca+Si foliar application is a good tool to improve the varietal aromatic quality of Tempranillo grapes and it is economically feasible.

Acknowledgements: M. G.-L. thanks the UR for her Margarita Salas contract (European Union-Next GenerationEU). E.P. P.-Á. thanks the MICIU for her postdoctoral financial support (IJC2019-040502-I). Thanks to the company Tradecorp for supplying us with the silicon product.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. González-Lázaro1, I. Sáenz de Urturi1, S. Marín-San Román1, R. Murillo-Peña1, L.L. Torres-Díaz1, E.P. Pérez-Álvarez1, V. Fernández2, M. del Álamo-Sanza3T. Garde-Cerdán1

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos Km. 6. 26007 Logroño, Spain
2Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid. Ciudad Universitaria, s/n. 28040 Madrid, Spain
3
Grupo UVaMOX (Unidad Asociada del ICVV), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Avda. Madrid 50, 34001 Palencia

Contact the author*

Keywords

calcium, silicon, foliar application, terpenoids, norisoprenoids, grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.