terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of Ca, Si and their combination on grape volatile composition

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Abstract

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition. The aim of this work was to evaluate the influence of Ca and Si foliar treatments, applied either as single elements or in combination, on volatile composition of Tempranillo grapes. All treatments were applied twice, at veraison and one week later. The foliar applications were performed in triplicate, in a randomized block design. The volatile composition was determined in the musts by headspace solid-phase microextraction (HS-SPME) and subsequent analysis by GC-MS. Tempranillo is a neutral aromatic variety, for this reason, on this work we have focused on terpenoids and C13 norisoprenoids, the two families most important regarding varietal aromas. Foliar application of Ca and Ca+Si enhanced p-cymene, geraniol, neral, and total terpenoids content in must with respect to control one. Ca+Si foliar treatment also improved limonene, α-terpineol, linalool, and nerol concentration in comparison with control must. Regarding C13 norisoprenoids, Ca+Si foliar application was the only treatment that increased (E)-β-damascenone, (Z)-β-damascenone, β-cyclocitral, TDN, methyl jasmonate, and total C13norisoprenoids with respect control must. Therefore, Ca+Si foliar application is a good tool to improve the varietal aromatic quality of Tempranillo grapes and it is economically feasible.

Acknowledgements: M. G.-L. thanks the UR for her Margarita Salas contract (European Union-Next GenerationEU). E.P. P.-Á. thanks the MICIU for her postdoctoral financial support (IJC2019-040502-I). Thanks to the company Tradecorp for supplying us with the silicon product.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. González-Lázaro1, I. Sáenz de Urturi1, S. Marín-San Román1, R. Murillo-Peña1, L.L. Torres-Díaz1, E.P. Pérez-Álvarez1, V. Fernández2, M. del Álamo-Sanza3T. Garde-Cerdán1

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos Km. 6. 26007 Logroño, Spain
2Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid. Ciudad Universitaria, s/n. 28040 Madrid, Spain
3
Grupo UVaMOX (Unidad Asociada del ICVV), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Avda. Madrid 50, 34001 Palencia

Contact the author*

Keywords

calcium, silicon, foliar application, terpenoids, norisoprenoids, grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.