terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

Abstract

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.

The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control. Vines were irrigated weekly to fulfil water requirements without fertilization. Gas exchange parameters were measured with portable gas exchange photosynthesis system (Li-Cor 6400, Lincoln, NE, USA) and water status was monitored by measuring the stem water potential with a Scholander pressure chamber (Precis 2000, Gradignan, France). Sown cover crops were mowed during the growing season, and at the end of summer, control and cover crop treatments were sowed. According to our results, T. fragiferum was the cover crop under the vine that reached the highest biomass. Despite the increased vegetative development of T. fragiferum, preliminary results did not show differences on grapevine performance and growth compared to other treatments. Conversely, the use of cover crops under the vine affected soil microbial communities. In general, the cover crops increased heterotrophic microbial diversity estimated with Biolog EcoplatesTM and mycorrhizal colonization of grapevine roots in comparison with the use of herbicide, T. fragiferum being the one that had the greatest effect on the biological quality of the soil. The scarce effect of the cover crops under the vines on the grapevine performance might indicate a relative weak competition between the grapevine and the studied cover crops. Therefore, the use of these under-vine covers could be an alternative to the use of herbicides to control the adventitious vegetation growth. Also, the improvement of soil biological quality of the soil would affect positively grapevines performance.

Acknowledgements: This work was funded by Navarra Government (project PC044-045_CUALVID). N. Torres is beneficiary of a Ramón y Cajal Grant RYC2021-034586-I funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Maider Velaz1, Gonzaga Santesteban1,2, Fermín Morales3, Iker Aranjuelo3, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona-Iruña, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona-Iruña, Spain
3 Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain

Contact the author*

Keywords

bacterial diversity, functional diversity, soil health, Tempranillo, Trifolium fragiferum, water content

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.