terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

Abstract

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.

The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control. Vines were irrigated weekly to fulfil water requirements without fertilization. Gas exchange parameters were measured with portable gas exchange photosynthesis system (Li-Cor 6400, Lincoln, NE, USA) and water status was monitored by measuring the stem water potential with a Scholander pressure chamber (Precis 2000, Gradignan, France). Sown cover crops were mowed during the growing season, and at the end of summer, control and cover crop treatments were sowed. According to our results, T. fragiferum was the cover crop under the vine that reached the highest biomass. Despite the increased vegetative development of T. fragiferum, preliminary results did not show differences on grapevine performance and growth compared to other treatments. Conversely, the use of cover crops under the vine affected soil microbial communities. In general, the cover crops increased heterotrophic microbial diversity estimated with Biolog EcoplatesTM and mycorrhizal colonization of grapevine roots in comparison with the use of herbicide, T. fragiferum being the one that had the greatest effect on the biological quality of the soil. The scarce effect of the cover crops under the vines on the grapevine performance might indicate a relative weak competition between the grapevine and the studied cover crops. Therefore, the use of these under-vine covers could be an alternative to the use of herbicides to control the adventitious vegetation growth. Also, the improvement of soil biological quality of the soil would affect positively grapevines performance.

Acknowledgements: This work was funded by Navarra Government (project PC044-045_CUALVID). N. Torres is beneficiary of a Ramón y Cajal Grant RYC2021-034586-I funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Maider Velaz1, Gonzaga Santesteban1,2, Fermín Morales3, Iker Aranjuelo3, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona-Iruña, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona-Iruña, Spain
3 Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain

Contact the author*

Keywords

bacterial diversity, functional diversity, soil health, Tempranillo, Trifolium fragiferum, water content

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.