terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

Abstract

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.

The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control. Vines were irrigated weekly to fulfil water requirements without fertilization. Gas exchange parameters were measured with portable gas exchange photosynthesis system (Li-Cor 6400, Lincoln, NE, USA) and water status was monitored by measuring the stem water potential with a Scholander pressure chamber (Precis 2000, Gradignan, France). Sown cover crops were mowed during the growing season, and at the end of summer, control and cover crop treatments were sowed. According to our results, T. fragiferum was the cover crop under the vine that reached the highest biomass. Despite the increased vegetative development of T. fragiferum, preliminary results did not show differences on grapevine performance and growth compared to other treatments. Conversely, the use of cover crops under the vine affected soil microbial communities. In general, the cover crops increased heterotrophic microbial diversity estimated with Biolog EcoplatesTM and mycorrhizal colonization of grapevine roots in comparison with the use of herbicide, T. fragiferum being the one that had the greatest effect on the biological quality of the soil. The scarce effect of the cover crops under the vines on the grapevine performance might indicate a relative weak competition between the grapevine and the studied cover crops. Therefore, the use of these under-vine covers could be an alternative to the use of herbicides to control the adventitious vegetation growth. Also, the improvement of soil biological quality of the soil would affect positively grapevines performance.

Acknowledgements: This work was funded by Navarra Government (project PC044-045_CUALVID). N. Torres is beneficiary of a Ramón y Cajal Grant RYC2021-034586-I funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Maider Velaz1, Gonzaga Santesteban1,2, Fermín Morales3, Iker Aranjuelo3, Nazareth Torres1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona-Iruña, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona-Iruña, Spain
3 Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain

Contact the author*

Keywords

bacterial diversity, functional diversity, soil health, Tempranillo, Trifolium fragiferum, water content

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.