terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Abstract

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Ten different plots were selected from Castilla y León region in order to estimate the natural presence of Trichodermain soil vineyards. Samples were collected during winter at 10-30 cm depth. After, the presence of Trichoderma and main physical and chemical characteristics were evaluated in these soils. Moreover, in vitro tests of Trichoderma were done against P. minimum.

This work showed that Trichoderma soil abundance was higher in a vineyard from PDO Bierzo and none Trichoderma was found in 2 vineyards from PDO Ribera del Duero. A Principal Component analysis was performed to evaluate the possible relationship to physicochemical values of soil and presence of Trichoderma. We obtained that extractable iron was positively correlated (p<0.05) to Trichoderma populations in soil and pH was negatively correlated (p<0.05) to the presence of Trichoderma in soil. Also, autochthonous strains showed a significant in vitro biocontrol against the pathogen P. minimum.

These results indicate that populations of Trichoderma in soil could be used as biological control agents in soil and are influenced by abiotic conditions.

Thanks to Pago de Carraovejas winery and the project LOWPHWINE, reference IDI-20210391.

References:

1)  Carro-Huerga. et al. (2023) Vineyard Management and Physicochemical Parameters of Soil Affect Native Trichoderma Populations, Sources of Biocontrol Agents against Phaeoacremonium minimum. Plants 202312(4), 887, https://doi.org/10.3390/plants12040887

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Carro-Huerga G.1, Zanfaño L.1, Mayo-Prieto S. 1, Rodríguez-González A. 1, Gutiérrez S. 2, Casquero P.A.1

1Grupo de Investigación de Ingeniería y Agricultura Sostenible. Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León Av. Portugal 41, 24071 León, España.
2Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Campus de Ponferrada, Universidad de León, Avenida Astorga s/n, 24400 Ponferrada, Spain

Contact the author*

Keywords

soil, biological control agent, in vitro assays

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.