terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Abstract

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Ten different plots were selected from Castilla y León region in order to estimate the natural presence of Trichodermain soil vineyards. Samples were collected during winter at 10-30 cm depth. After, the presence of Trichoderma and main physical and chemical characteristics were evaluated in these soils. Moreover, in vitro tests of Trichoderma were done against P. minimum.

This work showed that Trichoderma soil abundance was higher in a vineyard from PDO Bierzo and none Trichoderma was found in 2 vineyards from PDO Ribera del Duero. A Principal Component analysis was performed to evaluate the possible relationship to physicochemical values of soil and presence of Trichoderma. We obtained that extractable iron was positively correlated (p<0.05) to Trichoderma populations in soil and pH was negatively correlated (p<0.05) to the presence of Trichoderma in soil. Also, autochthonous strains showed a significant in vitro biocontrol against the pathogen P. minimum.

These results indicate that populations of Trichoderma in soil could be used as biological control agents in soil and are influenced by abiotic conditions.

Thanks to Pago de Carraovejas winery and the project LOWPHWINE, reference IDI-20210391.

References:

1)  Carro-Huerga. et al. (2023) Vineyard Management and Physicochemical Parameters of Soil Affect Native Trichoderma Populations, Sources of Biocontrol Agents against Phaeoacremonium minimum. Plants 202312(4), 887, https://doi.org/10.3390/plants12040887

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Carro-Huerga G.1, Zanfaño L.1, Mayo-Prieto S. 1, Rodríguez-González A. 1, Gutiérrez S. 2, Casquero P.A.1

1Grupo de Investigación de Ingeniería y Agricultura Sostenible. Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León Av. Portugal 41, 24071 León, España.
2Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Campus de Ponferrada, Universidad de León, Avenida Astorga s/n, 24400 Ponferrada, Spain

Contact the author*

Keywords

soil, biological control agent, in vitro assays

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.