terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Abstract

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.

In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil. Monitoring was performed in the soil top-layer (10 – 20 cm depth) and in the deeper layer (20 – 30 cm). The monitored physicochemical parameters were: pH; soil organic matter; total N; C/N ratio; soil texture; soil temperature and humidity; and the biological parameters: soil respiration (CO2 efflux using the chamber technique) and microbial populations of the following microbial families: yeasts, decomposers of organic matter (actinomycetes), nitrogen fixing bacteria and total aerobes.

Results showed that the EOM dosage was correctly adjusted and maintained the soil biochemical equilibrium and fertility. With regard to microbial populations, it was shown that the vineyard soil is a relevant yeast reservoir that conserved its yeast populations above 104 CFU/g dry soil. Results also showed that the most abundant microbial family was the nitrogen-fixing bacteria located in the soil top-layer, and remarkably, this population showed the highest values during the humid period and in the soil that received EOM, whereas the tilled soil on slope showed the lowest values. It is worth noting that the measured parameter of CO2 efflux showed higher values in the soil deeper layer, proximate to the grapevine rhizosphere, than in the upper layer, and it did not correlate with microbial populations. This could be explained by the fact that soil mesofauna is more abundant in the deeper, warmer and more humid soil layer than in the upper layer, and to the abundance of plant roots in the soil deeper layer. In summary, in this work it is shown that an adequate EOM addition to the vineyard soil can contribute to its microbial richness, which is regarded as a parameter associated with soil health.

Acknowledgment: Financed with the Project EOM4SOIL of the E.U. H2020-EJP SOIL Program.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

1J. Ugarte, I. Morteruel , 1E. Rodrigo, 1J. M. Martínez-Vidaurre, 2C. Tenorio, 2F. Ruiz-Larrea

1Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. De Burgos km 6, Logroño, 26007 (Spain).
2Universidad de La Rioja, ICVV (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño (Spain).

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.