terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Abstract

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.

In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil. Monitoring was performed in the soil top-layer (10 – 20 cm depth) and in the deeper layer (20 – 30 cm). The monitored physicochemical parameters were: pH; soil organic matter; total N; C/N ratio; soil texture; soil temperature and humidity; and the biological parameters: soil respiration (CO2 efflux using the chamber technique) and microbial populations of the following microbial families: yeasts, decomposers of organic matter (actinomycetes), nitrogen fixing bacteria and total aerobes.

Results showed that the EOM dosage was correctly adjusted and maintained the soil biochemical equilibrium and fertility. With regard to microbial populations, it was shown that the vineyard soil is a relevant yeast reservoir that conserved its yeast populations above 104 CFU/g dry soil. Results also showed that the most abundant microbial family was the nitrogen-fixing bacteria located in the soil top-layer, and remarkably, this population showed the highest values during the humid period and in the soil that received EOM, whereas the tilled soil on slope showed the lowest values. It is worth noting that the measured parameter of CO2 efflux showed higher values in the soil deeper layer, proximate to the grapevine rhizosphere, than in the upper layer, and it did not correlate with microbial populations. This could be explained by the fact that soil mesofauna is more abundant in the deeper, warmer and more humid soil layer than in the upper layer, and to the abundance of plant roots in the soil deeper layer. In summary, in this work it is shown that an adequate EOM addition to the vineyard soil can contribute to its microbial richness, which is regarded as a parameter associated with soil health.

Acknowledgment: Financed with the Project EOM4SOIL of the E.U. H2020-EJP SOIL Program.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

1J. Ugarte, I. Morteruel , 1E. Rodrigo, 1J. M. Martínez-Vidaurre, 2C. Tenorio, 2F. Ruiz-Larrea

1Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. De Burgos km 6, Logroño, 26007 (Spain).
2Universidad de La Rioja, ICVV (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño (Spain).

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.