terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Abstract

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.

In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil. Monitoring was performed in the soil top-layer (10 – 20 cm depth) and in the deeper layer (20 – 30 cm). The monitored physicochemical parameters were: pH; soil organic matter; total N; C/N ratio; soil texture; soil temperature and humidity; and the biological parameters: soil respiration (CO2 efflux using the chamber technique) and microbial populations of the following microbial families: yeasts, decomposers of organic matter (actinomycetes), nitrogen fixing bacteria and total aerobes.

Results showed that the EOM dosage was correctly adjusted and maintained the soil biochemical equilibrium and fertility. With regard to microbial populations, it was shown that the vineyard soil is a relevant yeast reservoir that conserved its yeast populations above 104 CFU/g dry soil. Results also showed that the most abundant microbial family was the nitrogen-fixing bacteria located in the soil top-layer, and remarkably, this population showed the highest values during the humid period and in the soil that received EOM, whereas the tilled soil on slope showed the lowest values. It is worth noting that the measured parameter of CO2 efflux showed higher values in the soil deeper layer, proximate to the grapevine rhizosphere, than in the upper layer, and it did not correlate with microbial populations. This could be explained by the fact that soil mesofauna is more abundant in the deeper, warmer and more humid soil layer than in the upper layer, and to the abundance of plant roots in the soil deeper layer. In summary, in this work it is shown that an adequate EOM addition to the vineyard soil can contribute to its microbial richness, which is regarded as a parameter associated with soil health.

Acknowledgment: Financed with the Project EOM4SOIL of the E.U. H2020-EJP SOIL Program.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

1J. Ugarte, I. Morteruel , 1E. Rodrigo, 1J. M. Martínez-Vidaurre, 2C. Tenorio, 2F. Ruiz-Larrea

1Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. De Burgos km 6, Logroño, 26007 (Spain).
2Universidad de La Rioja, ICVV (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño (Spain).

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).