terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

Abstract

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.

In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil. Monitoring was performed in the soil top-layer (10 – 20 cm depth) and in the deeper layer (20 – 30 cm). The monitored physicochemical parameters were: pH; soil organic matter; total N; C/N ratio; soil texture; soil temperature and humidity; and the biological parameters: soil respiration (CO2 efflux using the chamber technique) and microbial populations of the following microbial families: yeasts, decomposers of organic matter (actinomycetes), nitrogen fixing bacteria and total aerobes.

Results showed that the EOM dosage was correctly adjusted and maintained the soil biochemical equilibrium and fertility. With regard to microbial populations, it was shown that the vineyard soil is a relevant yeast reservoir that conserved its yeast populations above 104 CFU/g dry soil. Results also showed that the most abundant microbial family was the nitrogen-fixing bacteria located in the soil top-layer, and remarkably, this population showed the highest values during the humid period and in the soil that received EOM, whereas the tilled soil on slope showed the lowest values. It is worth noting that the measured parameter of CO2 efflux showed higher values in the soil deeper layer, proximate to the grapevine rhizosphere, than in the upper layer, and it did not correlate with microbial populations. This could be explained by the fact that soil mesofauna is more abundant in the deeper, warmer and more humid soil layer than in the upper layer, and to the abundance of plant roots in the soil deeper layer. In summary, in this work it is shown that an adequate EOM addition to the vineyard soil can contribute to its microbial richness, which is regarded as a parameter associated with soil health.

Acknowledgment: Financed with the Project EOM4SOIL of the E.U. H2020-EJP SOIL Program.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

1J. Ugarte, I. Morteruel , 1E. Rodrigo, 1J. M. Martínez-Vidaurre, 2C. Tenorio, 2F. Ruiz-Larrea

1Instituto de Ciencias de la Vid y del Vino – ICVV (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. De Burgos km 6, Logroño, 26007 (Spain).
2Universidad de La Rioja, ICVV (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño (Spain).

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.