terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Organic mulches slightly influence wine phenolic composition and sensorial properties

Organic mulches slightly influence wine phenolic composition and sensorial properties

Abstract

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards. Three treatments involved organic mulches (grape pruning debris (GPD), straw (STR), and spent mushroom compost (SMC)). The other two treatments involved conventional soil management methods (interrow tillage (TILL) and herbicide (HERB)). The implanted organic mulches affected wine physicochemical parameters although they remained within acceptable ranges for optimal wine elaboration. In general, wines from organic mulches, especially SMC, exhibited higher pH, potassium and hue and lower acidity values compared to bare soils. Differences were likely due to higher soil moisture and fertility. The phenolic profile showed minimal differences among treatments, except for SMC wine, which had lower total flavonols content. Additionally, no differences in wine sensorial properties were observed. Therefore, organic mulches, especially STR and GPD, could serve as alternative practices to mitigate climate change impacts without compromising wine sensory properties and with minimal impact on wine physicalchemical and phenolic composition.

Acknowledgements: The authors thank Pernod Ricard and D. Mateos for sharing their vineyards. This study was jointly supported by the FEDER Funds and the RTI2018-095748-R-I00 Project (Ministerio de Ciencia, Innovación y Universidades).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andreu Mairata, Alicia Pou, Juana Martínez, Miguel Puelles, David Labarga, Javier Portu*

Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), 26007, Logroño, Spain

Contact the author*

Keywords

grapevine, mulching, soil management, viticulture, circular economy

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.