terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Abstract

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards. These strategies were developed by several local agents and experts using the CAPiPP serious game (Hossard et al., 2022) in different types of vineyards in the Rieutord basin, located in Languedoc, France. We applied DEXi PM Vigne to three types of vineyards: conventional and PGI wine labels, organic and DOP wine labels, and organic and mixed wine labels. The strategies chosen during the game workshops were used for the assessment. The results of the assessment revealed improvements in environmental indicators, moderate improvements in social indicators, and slight declines in economic indicators due to the risk of yield losses, particularly during years with high disease pressure. The application of the DEXi PM Vigne tool proved to be helpful in conducting an ex-ante assessment, which can assist winegrowers in considering future impacts before implementing new management strategies.

References:

  1. Gary C.; Dubuc M.; Metral R.; Fortino G. DEXiPM Vigne® (version 1.0), un outil pour l’analyse de la durabilité des systèmes de culture viticoles. Manuel des entrées de DEXiPM Vigne®. 2015, 105 p. ffhal-01604762f
  2. Hossard, L., Schneider, C., Voltz, M. (2022). A role-playing game to stimulate thinking about vineyard management practices to limit pesticide use and impacts. Journal of Cleaner Production, 380, 134913.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Hugo Fernandez-Mena1*, Claire Schneider1, Raphaël Métral1, Aurélie Metay1

1Institut Agro Montpellier – UMR ABSys (INRAE, CIRAD, U. Montpellier), Montpellier, France

Contact the author*

Keywords

sustainability, grapevine protection, assessment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.