terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Abstract

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards. These strategies were developed by several local agents and experts using the CAPiPP serious game (Hossard et al., 2022) in different types of vineyards in the Rieutord basin, located in Languedoc, France. We applied DEXi PM Vigne to three types of vineyards: conventional and PGI wine labels, organic and DOP wine labels, and organic and mixed wine labels. The strategies chosen during the game workshops were used for the assessment. The results of the assessment revealed improvements in environmental indicators, moderate improvements in social indicators, and slight declines in economic indicators due to the risk of yield losses, particularly during years with high disease pressure. The application of the DEXi PM Vigne tool proved to be helpful in conducting an ex-ante assessment, which can assist winegrowers in considering future impacts before implementing new management strategies.

References:

  1. Gary C.; Dubuc M.; Metral R.; Fortino G. DEXiPM Vigne® (version 1.0), un outil pour l’analyse de la durabilité des systèmes de culture viticoles. Manuel des entrées de DEXiPM Vigne®. 2015, 105 p. ffhal-01604762f
  2. Hossard, L., Schneider, C., Voltz, M. (2022). A role-playing game to stimulate thinking about vineyard management practices to limit pesticide use and impacts. Journal of Cleaner Production, 380, 134913.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Hugo Fernandez-Mena1*, Claire Schneider1, Raphaël Métral1, Aurélie Metay1

1Institut Agro Montpellier – UMR ABSys (INRAE, CIRAD, U. Montpellier), Montpellier, France

Contact the author*

Keywords

sustainability, grapevine protection, assessment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.