terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Conventional and alternative pest management strategies: a comparative proteomic study on musts

Conventional and alternative pest management strategies: a comparative proteomic study on musts

Abstract

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases. So, to guarantee the yield and quality of the harvest, it is usually necessary to treat vines against these diseases from the 5/6-leaf stage to the bunch closure stage. In the present study carried out on a Chardonnay plot located at Lugny (Mâconnais Vineyard, France), we compared, the conventional vineyard protection strategy to the alternative one using “bio” solutions. The latter included the use of copper/sulfur and phosphonate or Bacillus-based products. For the two studied vintages (2020 and 2021), up to 8 treatments were applied whatever the protection strategy used. Besides the evaluation of the protection efficacy against downy and powdery mildews, we performed proteomic analyses (LC-MS/MS) to assess the impact of these two crop protection strategies on must quality. Among the 1041 proteins analyzed, 215 were significantly differentially expressed and the clustering analysis allowed to distinguish the two vintages rather than the protection management strategies. At last, a label-free quantification of proteins using spectral counting was performed from 2021 vintage and finally revealed that less than 2% of proteins were significantly differentially expressed between the two-pest management used.

Acknowledgements: We acknowledge F. Bidaut (Vinipôle Sud Bourgogne, Mâcon, France).

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Héloir M-C.1*Ϯ, Lemaitre-Guillier C.1 Ϯ, Schaeffer C.2, Strub J-M.2, Deulvot C.1, Adrian M.1

1Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
2 Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, Univ. de Strasbourg, CNRS, Strasbourg, France.

Ϯ: co- first authors

Contact the author*

Keywords

biocontrol, grapevine protection, proteomic analysis, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.