terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Conventional and alternative pest management strategies: a comparative proteomic study on musts

Conventional and alternative pest management strategies: a comparative proteomic study on musts

Abstract

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases. So, to guarantee the yield and quality of the harvest, it is usually necessary to treat vines against these diseases from the 5/6-leaf stage to the bunch closure stage. In the present study carried out on a Chardonnay plot located at Lugny (Mâconnais Vineyard, France), we compared, the conventional vineyard protection strategy to the alternative one using “bio” solutions. The latter included the use of copper/sulfur and phosphonate or Bacillus-based products. For the two studied vintages (2020 and 2021), up to 8 treatments were applied whatever the protection strategy used. Besides the evaluation of the protection efficacy against downy and powdery mildews, we performed proteomic analyses (LC-MS/MS) to assess the impact of these two crop protection strategies on must quality. Among the 1041 proteins analyzed, 215 were significantly differentially expressed and the clustering analysis allowed to distinguish the two vintages rather than the protection management strategies. At last, a label-free quantification of proteins using spectral counting was performed from 2021 vintage and finally revealed that less than 2% of proteins were significantly differentially expressed between the two-pest management used.

Acknowledgements: We acknowledge F. Bidaut (Vinipôle Sud Bourgogne, Mâcon, France).

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Héloir M-C.1*Ϯ, Lemaitre-Guillier C.1 Ϯ, Schaeffer C.2, Strub J-M.2, Deulvot C.1, Adrian M.1

1Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
2 Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, Univ. de Strasbourg, CNRS, Strasbourg, France.

Ϯ: co- first authors

Contact the author*

Keywords

biocontrol, grapevine protection, proteomic analysis, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.