terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Abstract

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.

The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year. Four cover crop management treatments were tested: buried cover crop (T) and only shredded (S), combined with two treatment timings: early (E) and late treatment (L).

During the 2020-2021 seasons, data of stem water potential, maturation curves, productivity, and soil biological characteristics were collected during the summer and at harvest.

The treatments did not have a significant effect on grapevine production in terms of bunch number, production per plant, and average bunch weight. However, the treatment tilled late (TL) showed higher concentrations of titratable acidity, lower concentrations of soluble sugars and pH compared to the other treatments. Furthermore, the same  significantly increased the values of soil microbial metabolic quotient (qCO2) compared to the other treatments.

The termination timing had a noticeable effect on the T treatments in terms of stem water potential. TL exhibited the highest stem water potential, whereas the TE treatment had the lowest values. Additionally, these two treatments displayed the most contrasting trends in terms of stem water potential. These findings suggest that termination timing had a more pronounced impact on tilled soils compared to shredded soils.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mirko Sodini1*, Alessandro Pichierri1,2, Alberto Calderan1,2, Riccardo Braidotti1, Claudio Mondini5, Paolo Sivilotti1

1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine,Via Delle Scienze 206, 33100 Udine, Italy
2 Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy3 CREA Research Centre for Vitiaculture and Enology, branch of Gorizia, via Trieste 23, I-34170 Gorizia, Italy

Contact the author*

Keywords

stem water potential, cover crops, soil management, Glera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.