terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Abstract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations. In contrast, Ecklonia maxima (EM) species, is relatively under researched. In this study the effects of EM seaweed extract (Kelpak®) foliar spray applied: one week before flowering (EL- stage 18), at berry set (EL- stage 27) and at véraison (EL-stage 35) in combination with two different water-status scenarios (non-irrigated and irrigated) were investigated. The four treatments (CIR-, CIR+, EMIR- and EMIR+) were applied in ten min-experimental plots (consisting of 3 vines and 30 vines per treatment) in a commercial block of Vitis vinifera L. cv. Cabernet Sauvignon in the Stellenbosch wine region. The effects on grapevine physiology (gaseous exchange, photosynthesis rate, chlorophyll fluorescence, predawn and stem water potentials), vegetative characteristics, reproductive characteristics (yield components) and the subsequent grape berry and wine metabolites were studied during the 2021-2022 harvest season. Differences in oenological parameters (classical parameters and phenolic composition) were also investigated and compared. Regardless of water status scenario, EM application did not affect vine photosynthetic capacity. Leaf area was positively influenced by the EM foliar applications which resulted in improved sugars and organic acid concentration. Furthermore, the concentration of grape phenolics at harvest were positively influenced which was also evident in the bottled wines from grapes derived from EM treated grapevines. Overall, the data suggest that the use of EM based foliar products, could be beneficial in increasing grape metabolites during the ripening period and could be beneficial for sustainable viticulture.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Liam Jay Samuels1*, Mathabatha Evodia Setati1 and Erna Hailey Blancquaert1

1Department of Viticulture and Oenology, South African Grape and Wine Research Institute (SAGWRI), Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa

Contact the author*

Keywords

grapevine, seaweed, biostimulants, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.