terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Abstract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations. In contrast, Ecklonia maxima (EM) species, is relatively under researched. In this study the effects of EM seaweed extract (Kelpak®) foliar spray applied: one week before flowering (EL- stage 18), at berry set (EL- stage 27) and at véraison (EL-stage 35) in combination with two different water-status scenarios (non-irrigated and irrigated) were investigated. The four treatments (CIR-, CIR+, EMIR- and EMIR+) were applied in ten min-experimental plots (consisting of 3 vines and 30 vines per treatment) in a commercial block of Vitis vinifera L. cv. Cabernet Sauvignon in the Stellenbosch wine region. The effects on grapevine physiology (gaseous exchange, photosynthesis rate, chlorophyll fluorescence, predawn and stem water potentials), vegetative characteristics, reproductive characteristics (yield components) and the subsequent grape berry and wine metabolites were studied during the 2021-2022 harvest season. Differences in oenological parameters (classical parameters and phenolic composition) were also investigated and compared. Regardless of water status scenario, EM application did not affect vine photosynthetic capacity. Leaf area was positively influenced by the EM foliar applications which resulted in improved sugars and organic acid concentration. Furthermore, the concentration of grape phenolics at harvest were positively influenced which was also evident in the bottled wines from grapes derived from EM treated grapevines. Overall, the data suggest that the use of EM based foliar products, could be beneficial in increasing grape metabolites during the ripening period and could be beneficial for sustainable viticulture.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Liam Jay Samuels1*, Mathabatha Evodia Setati1 and Erna Hailey Blancquaert1

1Department of Viticulture and Oenology, South African Grape and Wine Research Institute (SAGWRI), Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa

Contact the author*

Keywords

grapevine, seaweed, biostimulants, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.