terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oenococcus oeni clonal diversity in the carbonic maceration winemaking

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

Abstract

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1].O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2].  Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one. In the traditional winemaking by DC 3 genotypes were found, while in the free liquid of CM were 4 the clones and in the pressed CM wine were 9 (Figure 1). These results demonstrated that the CM winemaking favoured the O. oeni strains diversity, being the pressed fraction 3 times more diverse than DC winemaking, probably due to the breakage of the biofilms formed during the CM at the press moment or because the special environmental.

Figure 1. Percentage of detection of the Oenococcus oeni genotypes named with letters, in the destemming and crushing vinifications and in the free and pressed liquids from carbonic maceration.

Acknowledgements: This study has been financed from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

References:

1)  Gutiérrez A.R. et al. (2022) Influence of microbial population on the characteristics of carbonic maceration wines LWT-Food Sci. Tech., 166, DOI  10.1016/j.lwt.2022.113783

2)  González-Arenzana L. et al. (2014) Oenococcus oeni strain typification by combination of Multilocus Sequence Typing and Pulsed Field Gel Electrophoresis analysis. Food Microbiol., 38 : 295-302, DOI 10.1016/j.fm.2013.07.014.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

L. González-Arenzana1*, I. López-Alfaro, B. Larreina1, P. Garijo1, P. Santamaría1 and A. R. Gutiérrez1

1 ICVV, Instituto de Ciencias de la Vid y el Vino Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca La Grajera, Ctra. LO-20- salida 13, 26071, Logroño, Spain  

Contact the author*

Keywords

Oenococcus oeni, carbonic maceration, genotypes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.