terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oenococcus oeni clonal diversity in the carbonic maceration winemaking

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

Abstract

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1].O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2].  Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one. In the traditional winemaking by DC 3 genotypes were found, while in the free liquid of CM were 4 the clones and in the pressed CM wine were 9 (Figure 1). These results demonstrated that the CM winemaking favoured the O. oeni strains diversity, being the pressed fraction 3 times more diverse than DC winemaking, probably due to the breakage of the biofilms formed during the CM at the press moment or because the special environmental.

Figure 1. Percentage of detection of the Oenococcus oeni genotypes named with letters, in the destemming and crushing vinifications and in the free and pressed liquids from carbonic maceration.

Acknowledgements: This study has been financed from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

References:

1)  Gutiérrez A.R. et al. (2022) Influence of microbial population on the characteristics of carbonic maceration wines LWT-Food Sci. Tech., 166, DOI  10.1016/j.lwt.2022.113783

2)  González-Arenzana L. et al. (2014) Oenococcus oeni strain typification by combination of Multilocus Sequence Typing and Pulsed Field Gel Electrophoresis analysis. Food Microbiol., 38 : 295-302, DOI 10.1016/j.fm.2013.07.014.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

L. González-Arenzana1*, I. López-Alfaro, B. Larreina1, P. Garijo1, P. Santamaría1 and A. R. Gutiérrez1

1 ICVV, Instituto de Ciencias de la Vid y el Vino Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca La Grajera, Ctra. LO-20- salida 13, 26071, Logroño, Spain  

Contact the author*

Keywords

Oenococcus oeni, carbonic maceration, genotypes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.