terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oenococcus oeni clonal diversity in the carbonic maceration winemaking

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

Abstract

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1].O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2].  Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one. In the traditional winemaking by DC 3 genotypes were found, while in the free liquid of CM were 4 the clones and in the pressed CM wine were 9 (Figure 1). These results demonstrated that the CM winemaking favoured the O. oeni strains diversity, being the pressed fraction 3 times more diverse than DC winemaking, probably due to the breakage of the biofilms formed during the CM at the press moment or because the special environmental.

Figure 1. Percentage of detection of the Oenococcus oeni genotypes named with letters, in the destemming and crushing vinifications and in the free and pressed liquids from carbonic maceration.

Acknowledgements: This study has been financed from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

References:

1)  Gutiérrez A.R. et al. (2022) Influence of microbial population on the characteristics of carbonic maceration wines LWT-Food Sci. Tech., 166, DOI  10.1016/j.lwt.2022.113783

2)  González-Arenzana L. et al. (2014) Oenococcus oeni strain typification by combination of Multilocus Sequence Typing and Pulsed Field Gel Electrophoresis analysis. Food Microbiol., 38 : 295-302, DOI 10.1016/j.fm.2013.07.014.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

L. González-Arenzana1*, I. López-Alfaro, B. Larreina1, P. Garijo1, P. Santamaría1 and A. R. Gutiérrez1

1 ICVV, Instituto de Ciencias de la Vid y el Vino Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca La Grajera, Ctra. LO-20- salida 13, 26071, Logroño, Spain  

Contact the author*

Keywords

Oenococcus oeni, carbonic maceration, genotypes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).