terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Abstract

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs. General chemical parameters and aroma profile of wines were determined using official OIV methodology and GC analysis. The microbiological control of fermentations revealed the presence of 5 to 15 different strains of S. cerevisiae depending on the variety. The highest diversity of yeast strains was found in Loureira fermentation. Strains named as G3 and G4 were the dominant yeasts in all processes, except Godello (controlled by strain G11); therefore, they are the main responsible for the fermentative aromas of the wines. The total acidity of wines ranged between 4,2 g/L with Treixadura and 5.2 g/L with Loureira, while the alcohol content ranged between 13 % (v/v) with Loureira and 14,2 % (v/v) with Lado. Treixadura wines showed the highest concentration of fermentative volatile compounds and this variety and Loureira reached the highest content of terpenes and eugenol. A blend of these monovarietal wines will allow to obtain an exclusive wine, which expresses the biodiversity from Granxa D’Outeiro terroir.

Acknowledgements: Project FEADER 2022/009A financed with funds from FEADER (75%), Xunta de Galicia (22.5%) and Ministry of Agriculture, Fisheries and Food (MAPA) (2.5%)

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Pilar Blanco1*, Gloria Reinoso2, Rebeca González2, José Manuel M. Juste2, Manolo Neira2

Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428, Leiro-Ourense
2 A Granxa D’Outeiro, Francelos, Ribadavia, Ourense, 32418-Coordenadas (42.2745221, -8.1626866)

Contact the author*

Keywords

Granxa D’Outeiro, traditional grapevine varieties, spontaneous fermentation, Saccharomyces cerevisiae, yeast strains, wine chemical composition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).