terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Abstract

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character. This study aimed to explore the metabolite profiles and chemical transformations associated with noble rot in grape berries from the Betsek area in the Tokaj region. Botrytized grape samples were collected monthly from August to November, covering six phases of botritization. Immediate freezing in liquid nitrogen was performed on-field to preserve sample integrity. Metabolomic analysis was conducted by cryomilling the samples, followed by extraction with methanol and ethyl acetate. The extracts were analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, utilizing both positive and negative electrospray ionization. The resulting metabolomic data was processed and statistically analyzed. A principal component analysis (PCA) was performed on the untargeted metabolomic profiles obtained from the botrytized grape samples, which revealed distinct differences between each phase of botritization. The main source of variance observed in the PCA plot was attributed to the botrytization process itself. This finding suggests that the metabolic changes occurring during the different stages of botritization significantly contribute to the overall metabolite composition of the grape berries. Results provided a valuable overview of the dynamic nature of the metabolic transformations associated with noble rot, highlighting the temporal evolution of the metabolite profiles throughout the botrytization process. Further analysis will enable the identification of specific metabolites that contribute to the unique chemical characteristics of noble rot-affected grape berries.

Acknowledgements: This research was funded by the National Research, Development and Innovation Office under the project titled “Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University” with the grant number TKP2021-NKTA-16.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Miklós Lovas1*, Marietta Korózs1, Anna Molnár1, Ádám Hegyi1, Kriszta Szabadi1, Thomas Cels1, Kálmán Zoltán Váczy1

1Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary

Contact the author*

Keywords

noble rot, botrytis, metabolomics, grape, LCMS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.