terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Abstract

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character. This study aimed to explore the metabolite profiles and chemical transformations associated with noble rot in grape berries from the Betsek area in the Tokaj region. Botrytized grape samples were collected monthly from August to November, covering six phases of botritization. Immediate freezing in liquid nitrogen was performed on-field to preserve sample integrity. Metabolomic analysis was conducted by cryomilling the samples, followed by extraction with methanol and ethyl acetate. The extracts were analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, utilizing both positive and negative electrospray ionization. The resulting metabolomic data was processed and statistically analyzed. A principal component analysis (PCA) was performed on the untargeted metabolomic profiles obtained from the botrytized grape samples, which revealed distinct differences between each phase of botritization. The main source of variance observed in the PCA plot was attributed to the botrytization process itself. This finding suggests that the metabolic changes occurring during the different stages of botritization significantly contribute to the overall metabolite composition of the grape berries. Results provided a valuable overview of the dynamic nature of the metabolic transformations associated with noble rot, highlighting the temporal evolution of the metabolite profiles throughout the botrytization process. Further analysis will enable the identification of specific metabolites that contribute to the unique chemical characteristics of noble rot-affected grape berries.

Acknowledgements: This research was funded by the National Research, Development and Innovation Office under the project titled “Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University” with the grant number TKP2021-NKTA-16.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Miklós Lovas1*, Marietta Korózs1, Anna Molnár1, Ádám Hegyi1, Kriszta Szabadi1, Thomas Cels1, Kálmán Zoltán Váczy1

1Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary

Contact the author*

Keywords

noble rot, botrytis, metabolomics, grape, LCMS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].