terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Abstract

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character. This study aimed to explore the metabolite profiles and chemical transformations associated with noble rot in grape berries from the Betsek area in the Tokaj region. Botrytized grape samples were collected monthly from August to November, covering six phases of botritization. Immediate freezing in liquid nitrogen was performed on-field to preserve sample integrity. Metabolomic analysis was conducted by cryomilling the samples, followed by extraction with methanol and ethyl acetate. The extracts were analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, utilizing both positive and negative electrospray ionization. The resulting metabolomic data was processed and statistically analyzed. A principal component analysis (PCA) was performed on the untargeted metabolomic profiles obtained from the botrytized grape samples, which revealed distinct differences between each phase of botritization. The main source of variance observed in the PCA plot was attributed to the botrytization process itself. This finding suggests that the metabolic changes occurring during the different stages of botritization significantly contribute to the overall metabolite composition of the grape berries. Results provided a valuable overview of the dynamic nature of the metabolic transformations associated with noble rot, highlighting the temporal evolution of the metabolite profiles throughout the botrytization process. Further analysis will enable the identification of specific metabolites that contribute to the unique chemical characteristics of noble rot-affected grape berries.

Acknowledgements: This research was funded by the National Research, Development and Innovation Office under the project titled “Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University” with the grant number TKP2021-NKTA-16.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Miklós Lovas1*, Marietta Korózs1, Anna Molnár1, Ádám Hegyi1, Kriszta Szabadi1, Thomas Cels1, Kálmán Zoltán Váczy1

1Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary

Contact the author*

Keywords

noble rot, botrytis, metabolomics, grape, LCMS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.