terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Abstract

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character. This study aimed to explore the metabolite profiles and chemical transformations associated with noble rot in grape berries from the Betsek area in the Tokaj region. Botrytized grape samples were collected monthly from August to November, covering six phases of botritization. Immediate freezing in liquid nitrogen was performed on-field to preserve sample integrity. Metabolomic analysis was conducted by cryomilling the samples, followed by extraction with methanol and ethyl acetate. The extracts were analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, utilizing both positive and negative electrospray ionization. The resulting metabolomic data was processed and statistically analyzed. A principal component analysis (PCA) was performed on the untargeted metabolomic profiles obtained from the botrytized grape samples, which revealed distinct differences between each phase of botritization. The main source of variance observed in the PCA plot was attributed to the botrytization process itself. This finding suggests that the metabolic changes occurring during the different stages of botritization significantly contribute to the overall metabolite composition of the grape berries. Results provided a valuable overview of the dynamic nature of the metabolic transformations associated with noble rot, highlighting the temporal evolution of the metabolite profiles throughout the botrytization process. Further analysis will enable the identification of specific metabolites that contribute to the unique chemical characteristics of noble rot-affected grape berries.

Acknowledgements: This research was funded by the National Research, Development and Innovation Office under the project titled “Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University” with the grant number TKP2021-NKTA-16.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Miklós Lovas1*, Marietta Korózs1, Anna Molnár1, Ádám Hegyi1, Kriszta Szabadi1, Thomas Cels1, Kálmán Zoltán Váczy1

1Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary

Contact the author*

Keywords

noble rot, botrytis, metabolomics, grape, LCMS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.