terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

Abstract

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production. The L. thermotoleransstrains comprised several strains available commercially and several natural isolates related to wine. L. thermotolerans showed significant statistical differences in basic chemical parameters such as lactic acid, malic acid, succinic acid, acetic acid, glycerol, higher alcohols, esters, fatty acids or ethanol levels as well as in the volatile profile. S. cerevisiae clearly produced some volatile compounds in higher amounts than the studied L. thermotolerans strains while others showed the opposite effect.

References:

1)  Benito S. et al. (2018) The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol., 102: 6775-6790, DOI 10.1007/s00253-018-9117-z

2)  Vicente J. et al. (2021) An integrative view of the role of Lachancea thermotolerans in wine technology. Foods., 10(11): 2878-2885, DOI 10.3390/fermentation4030053

3)  Vicente J. et al. (2022) Biological management of acidity in wine industry: A review. Int. J. Food. Microbiol., 375: 109726, DOI 10.1016/j.ijfoodmicro.2022.109726

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Santiago Benito1*, Javier Vicente2, Wendu Tesfaye1, Eva Navascués1,3, Fernando Calderón1, Antonio Santos2, Domingo Marquina2    

1 Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
2 Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Complutense University of Madrid, 28040 Madrid, Spain
3 Pago de Carraovejas, S.L.U., 47300 Penafiel, Valladolid, Spain

Contact the author*

Keywords

Lachancea thermotolerans; Saccharomyces cerevisiae, volatile compounds,
malic acid, lactic acid

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.