terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenotyping bud break and trafficking of dormant buds from grafted vine

Phenotyping bud break and trafficking of dormant buds from grafted vine

Abstract

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1]. It is the main objective of this project to identify rootstock genotypes that could contribute in delaying bud burst in order to adapt to extreme climate events. For this, first we investigated the cold requirements to achieve a homogenous bud break pattern from cuttings of Merlot, Cabernet Sauvignon and Chasselas[2]. Interestingly, Merlot needs longer cold exposure times to achieve 100% bud break. Moreover, bud break of different Vitis species was assessed in the field. Two late and one early Vitis were identified which will be used as rootstock in grafts with Cabernet Sauvignon. Bud break times of these combinations will be assessed to identify changes in bud dormancy in the scion. Furthermore, buds from Cabernet Sauvignon, Merlot and RGM are being sampled for a year-cycle to follow bud development, dormancy and bud break by RNAseq and metabolomics. This, coupled with QTLs identified from bud break of a population of Cabernet Sauvignon x Vitis riparia, will allow the identification of genes involved in dormancy and bud break. Lastly, to understand the rootstock/scion/bud communication, traficking of calceine in cuttings containing dormant and non-dormant buds was studied to indicate the moment in which this molecule is able to enter the bud. Results show that calceine is not able to enter the bud in either condition therefore, 32P is being used to rule out a possible molecular size effect.

Acknowledgements: We thank Lysiane Brocard from the Bordeaux Imaging Center for the advice on microscopy and Bordeaux Plant Sciences from the Université de Bordeaux for funding this research through the Grand Programme de Recherche (GPR).

1)  Miele A. (2019). Rootstock-scion interaction:6. Phenology, chilling and heat requirements of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura 41.

2)  Dokoozlian, N.K. 1999. Chilling Temperature and Duration Interact on the Budbreak of ‘Perlette’ Grapevine Cuttings. HORTSCIENCE, VOL. 34(6), OCTOBER 1999.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne Marie Labandera Nadeau1*, Elisa Marguerit1, Jean-Pascal Tandonnet1, Coralie Chesseron2, Alain Mollier2, Pierre Gastou1, Marina de Miguel Vega1, Bénédicte Wenden3, Sarah Cookson1

1 Ecophysiology and Functional Genomics of the Grapevine – INRAE Bordeaux Aquitaine
2 Interaction Sol Plante Atmosphére (ISPA) – INRAE Bordeaux Aquitaine

Biologie du Fruit et Pathologie – INRAE Bordeaux Aquitaine

Contact the author*

Keywords

bud break, dormancy, communication, grafting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).