terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenotyping bud break and trafficking of dormant buds from grafted vine

Phenotyping bud break and trafficking of dormant buds from grafted vine

Abstract

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1]. It is the main objective of this project to identify rootstock genotypes that could contribute in delaying bud burst in order to adapt to extreme climate events. For this, first we investigated the cold requirements to achieve a homogenous bud break pattern from cuttings of Merlot, Cabernet Sauvignon and Chasselas[2]. Interestingly, Merlot needs longer cold exposure times to achieve 100% bud break. Moreover, bud break of different Vitis species was assessed in the field. Two late and one early Vitis were identified which will be used as rootstock in grafts with Cabernet Sauvignon. Bud break times of these combinations will be assessed to identify changes in bud dormancy in the scion. Furthermore, buds from Cabernet Sauvignon, Merlot and RGM are being sampled for a year-cycle to follow bud development, dormancy and bud break by RNAseq and metabolomics. This, coupled with QTLs identified from bud break of a population of Cabernet Sauvignon x Vitis riparia, will allow the identification of genes involved in dormancy and bud break. Lastly, to understand the rootstock/scion/bud communication, traficking of calceine in cuttings containing dormant and non-dormant buds was studied to indicate the moment in which this molecule is able to enter the bud. Results show that calceine is not able to enter the bud in either condition therefore, 32P is being used to rule out a possible molecular size effect.

Acknowledgements: We thank Lysiane Brocard from the Bordeaux Imaging Center for the advice on microscopy and Bordeaux Plant Sciences from the Université de Bordeaux for funding this research through the Grand Programme de Recherche (GPR).

1)  Miele A. (2019). Rootstock-scion interaction:6. Phenology, chilling and heat requirements of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura 41.

2)  Dokoozlian, N.K. 1999. Chilling Temperature and Duration Interact on the Budbreak of ‘Perlette’ Grapevine Cuttings. HORTSCIENCE, VOL. 34(6), OCTOBER 1999.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne Marie Labandera Nadeau1*, Elisa Marguerit1, Jean-Pascal Tandonnet1, Coralie Chesseron2, Alain Mollier2, Pierre Gastou1, Marina de Miguel Vega1, Bénédicte Wenden3, Sarah Cookson1

1 Ecophysiology and Functional Genomics of the Grapevine – INRAE Bordeaux Aquitaine
2 Interaction Sol Plante Atmosphére (ISPA) – INRAE Bordeaux Aquitaine

Biologie du Fruit et Pathologie – INRAE Bordeaux Aquitaine

Contact the author*

Keywords

bud break, dormancy, communication, grafting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.