terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenotyping bud break and trafficking of dormant buds from grafted vine

Phenotyping bud break and trafficking of dormant buds from grafted vine

Abstract

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1]. It is the main objective of this project to identify rootstock genotypes that could contribute in delaying bud burst in order to adapt to extreme climate events. For this, first we investigated the cold requirements to achieve a homogenous bud break pattern from cuttings of Merlot, Cabernet Sauvignon and Chasselas[2]. Interestingly, Merlot needs longer cold exposure times to achieve 100% bud break. Moreover, bud break of different Vitis species was assessed in the field. Two late and one early Vitis were identified which will be used as rootstock in grafts with Cabernet Sauvignon. Bud break times of these combinations will be assessed to identify changes in bud dormancy in the scion. Furthermore, buds from Cabernet Sauvignon, Merlot and RGM are being sampled for a year-cycle to follow bud development, dormancy and bud break by RNAseq and metabolomics. This, coupled with QTLs identified from bud break of a population of Cabernet Sauvignon x Vitis riparia, will allow the identification of genes involved in dormancy and bud break. Lastly, to understand the rootstock/scion/bud communication, traficking of calceine in cuttings containing dormant and non-dormant buds was studied to indicate the moment in which this molecule is able to enter the bud. Results show that calceine is not able to enter the bud in either condition therefore, 32P is being used to rule out a possible molecular size effect.

Acknowledgements: We thank Lysiane Brocard from the Bordeaux Imaging Center for the advice on microscopy and Bordeaux Plant Sciences from the Université de Bordeaux for funding this research through the Grand Programme de Recherche (GPR).

1)  Miele A. (2019). Rootstock-scion interaction:6. Phenology, chilling and heat requirements of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura 41.

2)  Dokoozlian, N.K. 1999. Chilling Temperature and Duration Interact on the Budbreak of ‘Perlette’ Grapevine Cuttings. HORTSCIENCE, VOL. 34(6), OCTOBER 1999.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne Marie Labandera Nadeau1*, Elisa Marguerit1, Jean-Pascal Tandonnet1, Coralie Chesseron2, Alain Mollier2, Pierre Gastou1, Marina de Miguel Vega1, Bénédicte Wenden3, Sarah Cookson1

1 Ecophysiology and Functional Genomics of the Grapevine – INRAE Bordeaux Aquitaine
2 Interaction Sol Plante Atmosphére (ISPA) – INRAE Bordeaux Aquitaine

Biologie du Fruit et Pathologie – INRAE Bordeaux Aquitaine

Contact the author*

Keywords

bud break, dormancy, communication, grafting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].