terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenotyping bud break and trafficking of dormant buds from grafted vine

Phenotyping bud break and trafficking of dormant buds from grafted vine

Abstract

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1]. It is the main objective of this project to identify rootstock genotypes that could contribute in delaying bud burst in order to adapt to extreme climate events. For this, first we investigated the cold requirements to achieve a homogenous bud break pattern from cuttings of Merlot, Cabernet Sauvignon and Chasselas[2]. Interestingly, Merlot needs longer cold exposure times to achieve 100% bud break. Moreover, bud break of different Vitis species was assessed in the field. Two late and one early Vitis were identified which will be used as rootstock in grafts with Cabernet Sauvignon. Bud break times of these combinations will be assessed to identify changes in bud dormancy in the scion. Furthermore, buds from Cabernet Sauvignon, Merlot and RGM are being sampled for a year-cycle to follow bud development, dormancy and bud break by RNAseq and metabolomics. This, coupled with QTLs identified from bud break of a population of Cabernet Sauvignon x Vitis riparia, will allow the identification of genes involved in dormancy and bud break. Lastly, to understand the rootstock/scion/bud communication, traficking of calceine in cuttings containing dormant and non-dormant buds was studied to indicate the moment in which this molecule is able to enter the bud. Results show that calceine is not able to enter the bud in either condition therefore, 32P is being used to rule out a possible molecular size effect.

Acknowledgements: We thank Lysiane Brocard from the Bordeaux Imaging Center for the advice on microscopy and Bordeaux Plant Sciences from the Université de Bordeaux for funding this research through the Grand Programme de Recherche (GPR).

1)  Miele A. (2019). Rootstock-scion interaction:6. Phenology, chilling and heat requirements of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura 41.

2)  Dokoozlian, N.K. 1999. Chilling Temperature and Duration Interact on the Budbreak of ‘Perlette’ Grapevine Cuttings. HORTSCIENCE, VOL. 34(6), OCTOBER 1999.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne Marie Labandera Nadeau1*, Elisa Marguerit1, Jean-Pascal Tandonnet1, Coralie Chesseron2, Alain Mollier2, Pierre Gastou1, Marina de Miguel Vega1, Bénédicte Wenden3, Sarah Cookson1

1 Ecophysiology and Functional Genomics of the Grapevine – INRAE Bordeaux Aquitaine
2 Interaction Sol Plante Atmosphére (ISPA) – INRAE Bordeaux Aquitaine

Biologie du Fruit et Pathologie – INRAE Bordeaux Aquitaine

Contact the author*

Keywords

bud break, dormancy, communication, grafting

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.