terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

Abstract

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency. More specifically, cultivars with more negative values of δ13C (indicating later stomatal regulation) in non-limiting conditions could reveal higher vulnerability to drought [1]. Thus, selecting varieties with less negative δ13C values in non-limiting conditions could be a potential lever for adaptation to climate change.

A 2-hectare parcel was planted with 84 red and white cultivars in 2013, in the Haut Médoc wine region (Bordeaux, France) within a commercial wine-growing estate. Among those 84 cultivars, 7 were vinified over 5 vintages, 19 over 4 vintages and 24 over 3 vintages, resulting in a dataset of δ13C of 50 different cultivars over 3 to 5 vintages. The varieties included all the traditional Bordeaux varieties, some common varieties of Spain and Portugal, as well as other widely planted French varieties.

The vintage effect was clearly shown in the analyses, with the wettest vintages expressing more negative values of δ13C than drier vintages. δ13C values were also significantly different depending on the cultivar, allowing for a characterization of the 50 cultivars for their water use efficiency in limiting and non-limiting conditions. These results provide insights in the strategy of the cultivar’s water use and could help identifying potential drought tolerant varieties.

  1. Plantevin, M., Gowdy, M., Destrac-Irvine, A., Marguerit, E., Gambetta, G. A., & van Leeuwen, C. (2022). Using δ13C and hydroscapes for discriminating cultivar specific drought responses. OENO One56(2), 239–250. https://doi.org/10.20870/oeno-one.2022.56.2.5434

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marc Plantevin1, Yoann Merpault1, Mark Gowdy1, Gregory A. Gambetta1, Elisa Marguerit1, Julien Lecourt2, Cornelis van Leeuwen1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

climate change, δ13C, water use efficiency, drought tolerance, Vitis Vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Moderate wine consumption – part of a balanced diet or a health risk?

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide. The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.