terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

Abstract

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency. More specifically, cultivars with more negative values of δ13C (indicating later stomatal regulation) in non-limiting conditions could reveal higher vulnerability to drought [1]. Thus, selecting varieties with less negative δ13C values in non-limiting conditions could be a potential lever for adaptation to climate change.

A 2-hectare parcel was planted with 84 red and white cultivars in 2013, in the Haut Médoc wine region (Bordeaux, France) within a commercial wine-growing estate. Among those 84 cultivars, 7 were vinified over 5 vintages, 19 over 4 vintages and 24 over 3 vintages, resulting in a dataset of δ13C of 50 different cultivars over 3 to 5 vintages. The varieties included all the traditional Bordeaux varieties, some common varieties of Spain and Portugal, as well as other widely planted French varieties.

The vintage effect was clearly shown in the analyses, with the wettest vintages expressing more negative values of δ13C than drier vintages. δ13C values were also significantly different depending on the cultivar, allowing for a characterization of the 50 cultivars for their water use efficiency in limiting and non-limiting conditions. These results provide insights in the strategy of the cultivar’s water use and could help identifying potential drought tolerant varieties.

  1. Plantevin, M., Gowdy, M., Destrac-Irvine, A., Marguerit, E., Gambetta, G. A., & van Leeuwen, C. (2022). Using δ13C and hydroscapes for discriminating cultivar specific drought responses. OENO One56(2), 239–250. https://doi.org/10.20870/oeno-one.2022.56.2.5434

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marc Plantevin1, Yoann Merpault1, Mark Gowdy1, Gregory A. Gambetta1, Elisa Marguerit1, Julien Lecourt2, Cornelis van Leeuwen1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

climate change, δ13C, water use efficiency, drought tolerance, Vitis Vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.