terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Abstract

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo. During the period 2020-2021, in Valladolid, the response of cv. Verdejo, to the application, in 2020, of the following experimental treatments: T, control (no green pruning); Fj6, pruning to 6 nodes in fruit set; Fj3, pruning to 3 nodes in fruit set; Fk6, pruning to 6 nodes in pea size; Fk3, pruning to 3 nodes in pea size. Pruning was done by eliminating all the green organs (leaves, laterals and clusters) of the respected part (6 or 3 nodes) of all 16 shoots per vine. The design is in 4 random blocks, with elementary plot of 12 vines, in a vineyard planted in 2012, conducted on a vertical trellis and winter pruned in a bilateral Royat cordon with 8 spurs per vine. The effect of green pruning shoots, increasing the number of nodes 3 or 6 times, produced a notable increase in grape production, around 60% in Fj6 and Fj3 and 30% in Fk6, and a notable decrease in winter pruning wood, with average of 50% reduction, negatively affecting the vegetative response, and, above all, productive in the following campaign. Qualitatively, the green pruning of shoots greatly delayed ripening, reducing sugars and increasing the acidity of the grape, with variable intensity that was highly dependent on the time of pruning of the shoots.

Acknowledgements: Project PID2019-105039RR-C42 (MCIN/AEI) and Junta de Castilla y León.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

J. Yuste1, D. Martínez-Porro1

1Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España)

Contact the author*

Keywords

acidity, grapes, node, ripening, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.