terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Abstract

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality. In this work, the agronomic performance and water use efficiency of 12 grapevine varieties, including international ones, were studied under two water regimes over three consecutive growing seasons (2017, 2018 and 2019): an irrigated treatment at 25% of ETo (watered), and a rain-fed water regime (drought). Results showed significant effects of irrigation and vine variety on carbon isotope ratio (δ13C), yield components and total acidity. Airén and Malvar exhibited the highest water use efficiency in both treatments, although they showed diminished grape quality and reduced yields under drought. In contrast, certain varieties like Moscatel de Grano Menudo and Petit Verdot produced high-quality musts but demonstrated lower resilience to drought, resulting in decreased yields and δ13C values. Macabeo, Chardonnay, Bobal and Garnacha Tintorera responded well to drought, maintaining high yields and must quality. This study allowed the identification of grapevine varieties with varying levels of drought tolerance, providing valuable information for selecting the most suitable candidates for future cultivation in semi-arid regions. 

Acknowledgements: This work was supported by PID2019-105362RB-100, SBPLY/21/180501/000144 and UCLM intramural grants and EU FEDER funds.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. Mena-Morales1*, J. Martínez-Gascueña1, J.L. Chacón-Vozmediano1, A.S. Serrano1,2, A. Martín-Forero 3, M. Mena3

1Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso (Ciudad Real), Spain.
2Department of Agricultural Chemistry, School of Agricultural and Forestry Engineering and Biotechnology, University of Castilla-La Mancha, Avda. De España s/n, 02071 Albacete, Spain.
3Faculty of Environmental and Biochemistry Sciences, University of Castilla-La Mancha, Avda. Carlos III, s/n, Technological Campus of the Arms Factory, 45071 Toledo, Spain.

Contact the author*

Keywords

varieties, water use efficiency, carbon isotope ratio, yield, must quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.