terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Abstract

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality. In this work, the agronomic performance and water use efficiency of 12 grapevine varieties, including international ones, were studied under two water regimes over three consecutive growing seasons (2017, 2018 and 2019): an irrigated treatment at 25% of ETo (watered), and a rain-fed water regime (drought). Results showed significant effects of irrigation and vine variety on carbon isotope ratio (δ13C), yield components and total acidity. Airén and Malvar exhibited the highest water use efficiency in both treatments, although they showed diminished grape quality and reduced yields under drought. In contrast, certain varieties like Moscatel de Grano Menudo and Petit Verdot produced high-quality musts but demonstrated lower resilience to drought, resulting in decreased yields and δ13C values. Macabeo, Chardonnay, Bobal and Garnacha Tintorera responded well to drought, maintaining high yields and must quality. This study allowed the identification of grapevine varieties with varying levels of drought tolerance, providing valuable information for selecting the most suitable candidates for future cultivation in semi-arid regions. 

Acknowledgements: This work was supported by PID2019-105362RB-100, SBPLY/21/180501/000144 and UCLM intramural grants and EU FEDER funds.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. Mena-Morales1*, J. Martínez-Gascueña1, J.L. Chacón-Vozmediano1, A.S. Serrano1,2, A. Martín-Forero 3, M. Mena3

1Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso (Ciudad Real), Spain.
2Department of Agricultural Chemistry, School of Agricultural and Forestry Engineering and Biotechnology, University of Castilla-La Mancha, Avda. De España s/n, 02071 Albacete, Spain.
3Faculty of Environmental and Biochemistry Sciences, University of Castilla-La Mancha, Avda. Carlos III, s/n, Technological Campus of the Arms Factory, 45071 Toledo, Spain.

Contact the author*

Keywords

varieties, water use efficiency, carbon isotope ratio, yield, must quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.