terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Abstract

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality. In this work, the agronomic performance and water use efficiency of 12 grapevine varieties, including international ones, were studied under two water regimes over three consecutive growing seasons (2017, 2018 and 2019): an irrigated treatment at 25% of ETo (watered), and a rain-fed water regime (drought). Results showed significant effects of irrigation and vine variety on carbon isotope ratio (δ13C), yield components and total acidity. Airén and Malvar exhibited the highest water use efficiency in both treatments, although they showed diminished grape quality and reduced yields under drought. In contrast, certain varieties like Moscatel de Grano Menudo and Petit Verdot produced high-quality musts but demonstrated lower resilience to drought, resulting in decreased yields and δ13C values. Macabeo, Chardonnay, Bobal and Garnacha Tintorera responded well to drought, maintaining high yields and must quality. This study allowed the identification of grapevine varieties with varying levels of drought tolerance, providing valuable information for selecting the most suitable candidates for future cultivation in semi-arid regions. 

Acknowledgements: This work was supported by PID2019-105362RB-100, SBPLY/21/180501/000144 and UCLM intramural grants and EU FEDER funds.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. Mena-Morales1*, J. Martínez-Gascueña1, J.L. Chacón-Vozmediano1, A.S. Serrano1,2, A. Martín-Forero 3, M. Mena3

1Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso (Ciudad Real), Spain.
2Department of Agricultural Chemistry, School of Agricultural and Forestry Engineering and Biotechnology, University of Castilla-La Mancha, Avda. De España s/n, 02071 Albacete, Spain.
3Faculty of Environmental and Biochemistry Sciences, University of Castilla-La Mancha, Avda. Carlos III, s/n, Technological Campus of the Arms Factory, 45071 Toledo, Spain.

Contact the author*

Keywords

varieties, water use efficiency, carbon isotope ratio, yield, must quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.