terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

Abstract

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality. In this work, the agronomic performance and water use efficiency of 12 grapevine varieties, including international ones, were studied under two water regimes over three consecutive growing seasons (2017, 2018 and 2019): an irrigated treatment at 25% of ETo (watered), and a rain-fed water regime (drought). Results showed significant effects of irrigation and vine variety on carbon isotope ratio (δ13C), yield components and total acidity. Airén and Malvar exhibited the highest water use efficiency in both treatments, although they showed diminished grape quality and reduced yields under drought. In contrast, certain varieties like Moscatel de Grano Menudo and Petit Verdot produced high-quality musts but demonstrated lower resilience to drought, resulting in decreased yields and δ13C values. Macabeo, Chardonnay, Bobal and Garnacha Tintorera responded well to drought, maintaining high yields and must quality. This study allowed the identification of grapevine varieties with varying levels of drought tolerance, providing valuable information for selecting the most suitable candidates for future cultivation in semi-arid regions. 

Acknowledgements: This work was supported by PID2019-105362RB-100, SBPLY/21/180501/000144 and UCLM intramural grants and EU FEDER funds.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. Mena-Morales1*, J. Martínez-Gascueña1, J.L. Chacón-Vozmediano1, A.S. Serrano1,2, A. Martín-Forero 3, M. Mena3

1Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso (Ciudad Real), Spain.
2Department of Agricultural Chemistry, School of Agricultural and Forestry Engineering and Biotechnology, University of Castilla-La Mancha, Avda. De España s/n, 02071 Albacete, Spain.
3Faculty of Environmental and Biochemistry Sciences, University of Castilla-La Mancha, Avda. Carlos III, s/n, Technological Campus of the Arms Factory, 45071 Toledo, Spain.

Contact the author*

Keywords

varieties, water use efficiency, carbon isotope ratio, yield, must quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.