terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Climate change and viticulture in Nordic Countries and the Helsinki area

Climate change and viticulture in Nordic Countries and the Helsinki area

Abstract

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of ​​viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area. Southern Finland’s climate in the Helsinki area has become favourable for starting viticulture in the last couple of decades. This study viewed climate change and its impact on grapevine growth conditions in the Helsinki region during the first two decades of the millennium. [1] It observed an increase of 0.4 °C in the latter 10-year period compared to the previous 10-year period. Compared to the decades of the previous 20th century, this increase was more than twice higher during each of them. Between 2010 and 2019, the mean annual climate temperature exceeded seven times 7 °C, and in 2015, it was close to 8 °C. The budburst was latest on May 21. The growth cycle of Vitis vinifera variety Vitis ‘Rondo’, from bud break (E-L 5) [2] to harvest (E-L 38 and Brix18%), was shortened by11 days on average and by median 13 days over the second decade (2010–2019) compared to 2000–2019. The difference is statistically significant (p<0.05). The average beginning of harvest was shortened by 6 days, indicating a significant earlier harvest (p<0.05). The biggest difference in harvest days between the years was 21 days. Even during these short two decades, upward trending climate warming significantly accelerated the growth cycle of Vitis vinifera ‘Rondo’ in the Helsinki region.

References:
1) Karvonen J. (2020)   Changes in the grapevine’s growth cycle in Southern Finland in the 2000s –     comparison between two first decades. Clim. Change, 6(21): 94-99.
2) Eichhorn, K.W. and Lorenz, D.H. (1977) Phänologische Entwicklung der Rebe. Nachrichtenblatten des Deutschen Pflanzenschutzdienstes 21.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juha Karvonen1

1University of Helsinki, Department of Agricultural Sciences, Latokartanonkaari 7, 00790 Helsinki

Contact the author*

Keywords

northern viticulture, climate change, growing season, grape harvest

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.