terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Climate change and viticulture in Nordic Countries and the Helsinki area

Climate change and viticulture in Nordic Countries and the Helsinki area

Abstract

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of ​​viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area. Southern Finland’s climate in the Helsinki area has become favourable for starting viticulture in the last couple of decades. This study viewed climate change and its impact on grapevine growth conditions in the Helsinki region during the first two decades of the millennium. [1] It observed an increase of 0.4 °C in the latter 10-year period compared to the previous 10-year period. Compared to the decades of the previous 20th century, this increase was more than twice higher during each of them. Between 2010 and 2019, the mean annual climate temperature exceeded seven times 7 °C, and in 2015, it was close to 8 °C. The budburst was latest on May 21. The growth cycle of Vitis vinifera variety Vitis ‘Rondo’, from bud break (E-L 5) [2] to harvest (E-L 38 and Brix18%), was shortened by11 days on average and by median 13 days over the second decade (2010–2019) compared to 2000–2019. The difference is statistically significant (p<0.05). The average beginning of harvest was shortened by 6 days, indicating a significant earlier harvest (p<0.05). The biggest difference in harvest days between the years was 21 days. Even during these short two decades, upward trending climate warming significantly accelerated the growth cycle of Vitis vinifera ‘Rondo’ in the Helsinki region.

References:
1) Karvonen J. (2020)   Changes in the grapevine’s growth cycle in Southern Finland in the 2000s –     comparison between two first decades. Clim. Change, 6(21): 94-99.
2) Eichhorn, K.W. and Lorenz, D.H. (1977) Phänologische Entwicklung der Rebe. Nachrichtenblatten des Deutschen Pflanzenschutzdienstes 21.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juha Karvonen1

1University of Helsinki, Department of Agricultural Sciences, Latokartanonkaari 7, 00790 Helsinki

Contact the author*

Keywords

northern viticulture, climate change, growing season, grape harvest

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.