terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging and hydric stress: insights on an exceptionally dry year

Abstract

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1] Available water capacity (AWC) is defined as the amount of water a soil can store that is available for use by plants. AWC might be employed to gauge a predisposition to hydric stress which could ultimately lead to the onset of ATA. Considering previous research which has demonstrated that ATA development is likely to occur in fields having 30-40 mm AWC[2], this relationship was further investigated in the present study in an exceptionally dry growing season such as 2022.

11 vineyards located in Trento (Italy) were grouped according to their AWC (low, medium, high) and closely monitored over the course of the harvest season.  Given the climate conditions of the year, all of the fields under examination were subjected to drought conditions. While grapevines belonging to the ‘low’ class experienced severe stress conditions (midday leaf water potential, Ψleaf>15 bar), the ‘medium’ and ‘high’ classes were only moderately stressed (15>Ψleaf>12). Accordingly, all wines obtained were affected by ATA, displaying concentrations of AAP above the odor threshold (0.5 μg/L). Nonetheless, the AAP content of the ‘low’ class was significantly higher than the other classes. It was concluded that in exceptionally dry seasons, grapevines planted on fields characterized by a low AWC are more subjected to produce faulty wines characterized by ATA.

Acknowledgements: The authors would like to thank Cavit sc. for the technical and financial support.

References:
1)  Schneider V. (2014) Atypical aging defect: Sensory discrimination, viticultural causes, and enological consequences. Rev. Am. J. Enol. Vitic., 65:277–284, DOI 10.5344/ajev.2014.14014
2) Rauhut D. et al. (2003) Effect on diverse oenological methods to avoid occurrence of atypical aging and related off-flavours in wine. InŒnologie 2003. 7e Symposium International d’Œnology. A. Lonvaud-Funel et al., 376-379

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Simone Delaiti1,2*, Stefano Pedo’2, Tomas Roman2, Tiziana Nardin2, Roberto Larcher2

1C3A, Center Agriculture Food Environment, Via Edmund Mach, 1, San Michele all’Adige, TN, 38010 Italy
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author*

Keywords

atypical aging, aminocetophenone, drought stress, AWC

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.