terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging and hydric stress: insights on an exceptionally dry year

Abstract

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1] Available water capacity (AWC) is defined as the amount of water a soil can store that is available for use by plants. AWC might be employed to gauge a predisposition to hydric stress which could ultimately lead to the onset of ATA. Considering previous research which has demonstrated that ATA development is likely to occur in fields having 30-40 mm AWC[2], this relationship was further investigated in the present study in an exceptionally dry growing season such as 2022.

11 vineyards located in Trento (Italy) were grouped according to their AWC (low, medium, high) and closely monitored over the course of the harvest season.  Given the climate conditions of the year, all of the fields under examination were subjected to drought conditions. While grapevines belonging to the ‘low’ class experienced severe stress conditions (midday leaf water potential, Ψleaf>15 bar), the ‘medium’ and ‘high’ classes were only moderately stressed (15>Ψleaf>12). Accordingly, all wines obtained were affected by ATA, displaying concentrations of AAP above the odor threshold (0.5 μg/L). Nonetheless, the AAP content of the ‘low’ class was significantly higher than the other classes. It was concluded that in exceptionally dry seasons, grapevines planted on fields characterized by a low AWC are more subjected to produce faulty wines characterized by ATA.

Acknowledgements: The authors would like to thank Cavit sc. for the technical and financial support.

References:
1)  Schneider V. (2014) Atypical aging defect: Sensory discrimination, viticultural causes, and enological consequences. Rev. Am. J. Enol. Vitic., 65:277–284, DOI 10.5344/ajev.2014.14014
2) Rauhut D. et al. (2003) Effect on diverse oenological methods to avoid occurrence of atypical aging and related off-flavours in wine. InŒnologie 2003. 7e Symposium International d’Œnology. A. Lonvaud-Funel et al., 376-379

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Simone Delaiti1,2*, Stefano Pedo’2, Tomas Roman2, Tiziana Nardin2, Roberto Larcher2

1C3A, Center Agriculture Food Environment, Via Edmund Mach, 1, San Michele all’Adige, TN, 38010 Italy
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author*

Keywords

atypical aging, aminocetophenone, drought stress, AWC

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.