terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging and hydric stress: insights on an exceptionally dry year

Abstract

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1] Available water capacity (AWC) is defined as the amount of water a soil can store that is available for use by plants. AWC might be employed to gauge a predisposition to hydric stress which could ultimately lead to the onset of ATA. Considering previous research which has demonstrated that ATA development is likely to occur in fields having 30-40 mm AWC[2], this relationship was further investigated in the present study in an exceptionally dry growing season such as 2022.

11 vineyards located in Trento (Italy) were grouped according to their AWC (low, medium, high) and closely monitored over the course of the harvest season.  Given the climate conditions of the year, all of the fields under examination were subjected to drought conditions. While grapevines belonging to the ‘low’ class experienced severe stress conditions (midday leaf water potential, Ψleaf>15 bar), the ‘medium’ and ‘high’ classes were only moderately stressed (15>Ψleaf>12). Accordingly, all wines obtained were affected by ATA, displaying concentrations of AAP above the odor threshold (0.5 μg/L). Nonetheless, the AAP content of the ‘low’ class was significantly higher than the other classes. It was concluded that in exceptionally dry seasons, grapevines planted on fields characterized by a low AWC are more subjected to produce faulty wines characterized by ATA.

Acknowledgements: The authors would like to thank Cavit sc. for the technical and financial support.

References:
1)  Schneider V. (2014) Atypical aging defect: Sensory discrimination, viticultural causes, and enological consequences. Rev. Am. J. Enol. Vitic., 65:277–284, DOI 10.5344/ajev.2014.14014
2) Rauhut D. et al. (2003) Effect on diverse oenological methods to avoid occurrence of atypical aging and related off-flavours in wine. InŒnologie 2003. 7e Symposium International d’Œnology. A. Lonvaud-Funel et al., 376-379

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Simone Delaiti1,2*, Stefano Pedo’2, Tomas Roman2, Tiziana Nardin2, Roberto Larcher2

1C3A, Center Agriculture Food Environment, Via Edmund Mach, 1, San Michele all’Adige, TN, 38010 Italy
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author*

Keywords

atypical aging, aminocetophenone, drought stress, AWC

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.