terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Abstract

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change. The prevalent iso- or aniso-hydric behavior of grapevine varieties can be mitigated by the soil draining capacity: in the anisohydric Syrah grown in pots and in controlled conditions, an ABA-related stomatal closure was induced in water-retaining soils, resulting in a superimposition of the soil-related hormonal root-to-shoot signal respect to the putative genotypic-induced anisohydric response to water stress. In two consecutive years (2012 and 2013) we analyzed Nebbiolo water relations in two rain-fed vineyards (distance as the crow flies between the two was about 250 m) located on the Cannubi hill (Barolo area, Langhe Wine District, Piedmont, Italy). Vines were grafted on Vitis berlandieri x V. riparia rootstocks and soil were classified (USDA) as silty-loam (with 18 % of clay) and as loam (13 % of clay). We measured stomatal conductance, stem water potential, ABA leaf content and the main berry quality parameters. In 2013, the vineyard management (winter and green pruning, and bunch balance according to ‘Yield to Pruning Weight’ and ‘Leaf Area to Crop Weight’ ratios) allowed to avoid any discrepancies in the two vineyards vegetative-productive balance. Data showed that when drought was prolonged, Nebbiolo reduced its anisohydricity acting drought-induced stomatal closures earlier and for a longer period in the silty-loam soil, (richer in clay and more compact), respect to the loamy soil. The silty-loam soil determined a higher leaf ABA content during the season. This fact could explain the improved qualitative traits of berries harvested in the vineyard in the 18% clayey soil such as a higher content of anthocyanins (mg/berry), with a higher level of acylation (increase of color stabilization) and a higher content of free terpenes, following ABA-triggered metabolite responses.

Acknowledgements: authors warmly acknowledge Damilano cellar for hosting the trial.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alessandra Ferrandino1*, Antonio Carlomagno2, Gianpiero Romana3, Claudio Lovisolo1

1 DISAFA – University of Turin, Largo Braccini 2, Grugliasco (TO)
2 DiCEM – University of Basilicata, Via Lanera 20, Matera (MT)
Agronomist, Consultant

Contact the author*

Keywords

soil texture, stomatal conductance, leaf water potential, anthocyanins, free terpenes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).