terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Abstract

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change. The prevalent iso- or aniso-hydric behavior of grapevine varieties can be mitigated by the soil draining capacity: in the anisohydric Syrah grown in pots and in controlled conditions, an ABA-related stomatal closure was induced in water-retaining soils, resulting in a superimposition of the soil-related hormonal root-to-shoot signal respect to the putative genotypic-induced anisohydric response to water stress. In two consecutive years (2012 and 2013) we analyzed Nebbiolo water relations in two rain-fed vineyards (distance as the crow flies between the two was about 250 m) located on the Cannubi hill (Barolo area, Langhe Wine District, Piedmont, Italy). Vines were grafted on Vitis berlandieri x V. riparia rootstocks and soil were classified (USDA) as silty-loam (with 18 % of clay) and as loam (13 % of clay). We measured stomatal conductance, stem water potential, ABA leaf content and the main berry quality parameters. In 2013, the vineyard management (winter and green pruning, and bunch balance according to ‘Yield to Pruning Weight’ and ‘Leaf Area to Crop Weight’ ratios) allowed to avoid any discrepancies in the two vineyards vegetative-productive balance. Data showed that when drought was prolonged, Nebbiolo reduced its anisohydricity acting drought-induced stomatal closures earlier and for a longer period in the silty-loam soil, (richer in clay and more compact), respect to the loamy soil. The silty-loam soil determined a higher leaf ABA content during the season. This fact could explain the improved qualitative traits of berries harvested in the vineyard in the 18% clayey soil such as a higher content of anthocyanins (mg/berry), with a higher level of acylation (increase of color stabilization) and a higher content of free terpenes, following ABA-triggered metabolite responses.

Acknowledgements: authors warmly acknowledge Damilano cellar for hosting the trial.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alessandra Ferrandino1*, Antonio Carlomagno2, Gianpiero Romana3, Claudio Lovisolo1

1 DISAFA – University of Turin, Largo Braccini 2, Grugliasco (TO)
2 DiCEM – University of Basilicata, Via Lanera 20, Matera (MT)
Agronomist, Consultant

Contact the author*

Keywords

soil texture, stomatal conductance, leaf water potential, anthocyanins, free terpenes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.