terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Abstract

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change. The prevalent iso- or aniso-hydric behavior of grapevine varieties can be mitigated by the soil draining capacity: in the anisohydric Syrah grown in pots and in controlled conditions, an ABA-related stomatal closure was induced in water-retaining soils, resulting in a superimposition of the soil-related hormonal root-to-shoot signal respect to the putative genotypic-induced anisohydric response to water stress. In two consecutive years (2012 and 2013) we analyzed Nebbiolo water relations in two rain-fed vineyards (distance as the crow flies between the two was about 250 m) located on the Cannubi hill (Barolo area, Langhe Wine District, Piedmont, Italy). Vines were grafted on Vitis berlandieri x V. riparia rootstocks and soil were classified (USDA) as silty-loam (with 18 % of clay) and as loam (13 % of clay). We measured stomatal conductance, stem water potential, ABA leaf content and the main berry quality parameters. In 2013, the vineyard management (winter and green pruning, and bunch balance according to ‘Yield to Pruning Weight’ and ‘Leaf Area to Crop Weight’ ratios) allowed to avoid any discrepancies in the two vineyards vegetative-productive balance. Data showed that when drought was prolonged, Nebbiolo reduced its anisohydricity acting drought-induced stomatal closures earlier and for a longer period in the silty-loam soil, (richer in clay and more compact), respect to the loamy soil. The silty-loam soil determined a higher leaf ABA content during the season. This fact could explain the improved qualitative traits of berries harvested in the vineyard in the 18% clayey soil such as a higher content of anthocyanins (mg/berry), with a higher level of acylation (increase of color stabilization) and a higher content of free terpenes, following ABA-triggered metabolite responses.

Acknowledgements: authors warmly acknowledge Damilano cellar for hosting the trial.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alessandra Ferrandino1*, Antonio Carlomagno2, Gianpiero Romana3, Claudio Lovisolo1

1 DISAFA – University of Turin, Largo Braccini 2, Grugliasco (TO)
2 DiCEM – University of Basilicata, Via Lanera 20, Matera (MT)
Agronomist, Consultant

Contact the author*

Keywords

soil texture, stomatal conductance, leaf water potential, anthocyanins, free terpenes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.