terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Abstract

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan. The three different coating treatments were sprayed on Pinot noir grapes from Woodhall III Vineyards in Monroe, Oregon. just prior to veraison. Smoke was applied to the grapes by burning Oregon forest duff in grills attached to specially designed greenhouse tents, which were used to contain smoke around the grape vines for six hours. Smoke density was maintained between 20 to 100 mg/m3 for smoke particles <1 μm. Film-treated grapes and controls were harvested a week after smoke exposure. Prior to winemaking, half of the coated grapes were washed and the other half unwashed, to determine if the films would contribute smoke compounds during fermentation. Grape juice and final wines were analyzed for free and bound smoke phenols[2,3]. New markers for smoke exposure, thiophenols, were also analyzed given their contribution to the ashy flavor in smoke impacted wines. The films used in this study prevented the incorporation of a wide range of smoke phenols in the subsequent wine compared to the controls. But unfortunately, did not impact all the smoke compounds. While additional work is needed, these films are prospective deterrents to grape smoke exposure during wildfire events.

Acknowledgements: Funded by USDA-NIFA-SCRI Award #2021-51181-35862 and USDA-ARS #2072-21000—057-00D.

References:

1)  Parker M. et al. (2012) Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem., 60: 2629-2637, DOI 10.1021/jf2040548

2)  Liu Z. et al. (2020) A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10: 294, DOI 10.3390/metabo10070294

3) Caffrey, A., et al. (2019). Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. American Journal of Enology and Viticulture70(4), 373-381.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lindsay Garcia1, Trung Tran1, Jooyeoun Jung1, D.Cole Cerrato1, Victoria Koyner1, Michael H. Penner1, Alexander D. Levin2, Yanyun Zhao1 and Elizabeth Tomasino1

1Dept. of Food Science and Technology, Oregon State University, Corvallis, OR, USA
2Dept. Of Horticulture Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR, USA

Contact the author*

Keywords

thiophenols, guaiacol, chitosan, pectin, coating

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).