terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Abstract

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan. The three different coating treatments were sprayed on Pinot noir grapes from Woodhall III Vineyards in Monroe, Oregon. just prior to veraison. Smoke was applied to the grapes by burning Oregon forest duff in grills attached to specially designed greenhouse tents, which were used to contain smoke around the grape vines for six hours. Smoke density was maintained between 20 to 100 mg/m3 for smoke particles <1 μm. Film-treated grapes and controls were harvested a week after smoke exposure. Prior to winemaking, half of the coated grapes were washed and the other half unwashed, to determine if the films would contribute smoke compounds during fermentation. Grape juice and final wines were analyzed for free and bound smoke phenols[2,3]. New markers for smoke exposure, thiophenols, were also analyzed given their contribution to the ashy flavor in smoke impacted wines. The films used in this study prevented the incorporation of a wide range of smoke phenols in the subsequent wine compared to the controls. But unfortunately, did not impact all the smoke compounds. While additional work is needed, these films are prospective deterrents to grape smoke exposure during wildfire events.

Acknowledgements: Funded by USDA-NIFA-SCRI Award #2021-51181-35862 and USDA-ARS #2072-21000—057-00D.

References:

1)  Parker M. et al. (2012) Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem., 60: 2629-2637, DOI 10.1021/jf2040548

2)  Liu Z. et al. (2020) A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10: 294, DOI 10.3390/metabo10070294

3) Caffrey, A., et al. (2019). Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. American Journal of Enology and Viticulture70(4), 373-381.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lindsay Garcia1, Trung Tran1, Jooyeoun Jung1, D.Cole Cerrato1, Victoria Koyner1, Michael H. Penner1, Alexander D. Levin2, Yanyun Zhao1 and Elizabeth Tomasino1

1Dept. of Food Science and Technology, Oregon State University, Corvallis, OR, USA
2Dept. Of Horticulture Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR, USA

Contact the author*

Keywords

thiophenols, guaiacol, chitosan, pectin, coating

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.