terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Abstract

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan. The three different coating treatments were sprayed on Pinot noir grapes from Woodhall III Vineyards in Monroe, Oregon. just prior to veraison. Smoke was applied to the grapes by burning Oregon forest duff in grills attached to specially designed greenhouse tents, which were used to contain smoke around the grape vines for six hours. Smoke density was maintained between 20 to 100 mg/m3 for smoke particles <1 μm. Film-treated grapes and controls were harvested a week after smoke exposure. Prior to winemaking, half of the coated grapes were washed and the other half unwashed, to determine if the films would contribute smoke compounds during fermentation. Grape juice and final wines were analyzed for free and bound smoke phenols[2,3]. New markers for smoke exposure, thiophenols, were also analyzed given their contribution to the ashy flavor in smoke impacted wines. The films used in this study prevented the incorporation of a wide range of smoke phenols in the subsequent wine compared to the controls. But unfortunately, did not impact all the smoke compounds. While additional work is needed, these films are prospective deterrents to grape smoke exposure during wildfire events.

Acknowledgements: Funded by USDA-NIFA-SCRI Award #2021-51181-35862 and USDA-ARS #2072-21000—057-00D.

References:

1)  Parker M. et al. (2012) Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem., 60: 2629-2637, DOI 10.1021/jf2040548

2)  Liu Z. et al. (2020) A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10: 294, DOI 10.3390/metabo10070294

3) Caffrey, A., et al. (2019). Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. American Journal of Enology and Viticulture70(4), 373-381.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lindsay Garcia1, Trung Tran1, Jooyeoun Jung1, D.Cole Cerrato1, Victoria Koyner1, Michael H. Penner1, Alexander D. Levin2, Yanyun Zhao1 and Elizabeth Tomasino1

1Dept. of Food Science and Technology, Oregon State University, Corvallis, OR, USA
2Dept. Of Horticulture Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR, USA

Contact the author*

Keywords

thiophenols, guaiacol, chitosan, pectin, coating

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.