terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Abstract

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan. The three different coating treatments were sprayed on Pinot noir grapes from Woodhall III Vineyards in Monroe, Oregon. just prior to veraison. Smoke was applied to the grapes by burning Oregon forest duff in grills attached to specially designed greenhouse tents, which were used to contain smoke around the grape vines for six hours. Smoke density was maintained between 20 to 100 mg/m3 for smoke particles <1 μm. Film-treated grapes and controls were harvested a week after smoke exposure. Prior to winemaking, half of the coated grapes were washed and the other half unwashed, to determine if the films would contribute smoke compounds during fermentation. Grape juice and final wines were analyzed for free and bound smoke phenols[2,3]. New markers for smoke exposure, thiophenols, were also analyzed given their contribution to the ashy flavor in smoke impacted wines. The films used in this study prevented the incorporation of a wide range of smoke phenols in the subsequent wine compared to the controls. But unfortunately, did not impact all the smoke compounds. While additional work is needed, these films are prospective deterrents to grape smoke exposure during wildfire events.

Acknowledgements: Funded by USDA-NIFA-SCRI Award #2021-51181-35862 and USDA-ARS #2072-21000—057-00D.

References:

1)  Parker M. et al. (2012) Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem., 60: 2629-2637, DOI 10.1021/jf2040548

2)  Liu Z. et al. (2020) A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10: 294, DOI 10.3390/metabo10070294

3) Caffrey, A., et al. (2019). Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. American Journal of Enology and Viticulture70(4), 373-381.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lindsay Garcia1, Trung Tran1, Jooyeoun Jung1, D.Cole Cerrato1, Victoria Koyner1, Michael H. Penner1, Alexander D. Levin2, Yanyun Zhao1 and Elizabeth Tomasino1

1Dept. of Food Science and Technology, Oregon State University, Corvallis, OR, USA
2Dept. Of Horticulture Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR, USA

Contact the author*

Keywords

thiophenols, guaiacol, chitosan, pectin, coating

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.