terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Abstract

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan. The three different coating treatments were sprayed on Pinot noir grapes from Woodhall III Vineyards in Monroe, Oregon. just prior to veraison. Smoke was applied to the grapes by burning Oregon forest duff in grills attached to specially designed greenhouse tents, which were used to contain smoke around the grape vines for six hours. Smoke density was maintained between 20 to 100 mg/m3 for smoke particles <1 μm. Film-treated grapes and controls were harvested a week after smoke exposure. Prior to winemaking, half of the coated grapes were washed and the other half unwashed, to determine if the films would contribute smoke compounds during fermentation. Grape juice and final wines were analyzed for free and bound smoke phenols[2,3]. New markers for smoke exposure, thiophenols, were also analyzed given their contribution to the ashy flavor in smoke impacted wines. The films used in this study prevented the incorporation of a wide range of smoke phenols in the subsequent wine compared to the controls. But unfortunately, did not impact all the smoke compounds. While additional work is needed, these films are prospective deterrents to grape smoke exposure during wildfire events.

Acknowledgements: Funded by USDA-NIFA-SCRI Award #2021-51181-35862 and USDA-ARS #2072-21000—057-00D.

References:

1)  Parker M. et al. (2012) Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem., 60: 2629-2637, DOI 10.1021/jf2040548

2)  Liu Z. et al. (2020) A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10: 294, DOI 10.3390/metabo10070294

3) Caffrey, A., et al. (2019). Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. American Journal of Enology and Viticulture70(4), 373-381.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lindsay Garcia1, Trung Tran1, Jooyeoun Jung1, D.Cole Cerrato1, Victoria Koyner1, Michael H. Penner1, Alexander D. Levin2, Yanyun Zhao1 and Elizabeth Tomasino1

1Dept. of Food Science and Technology, Oregon State University, Corvallis, OR, USA
2Dept. Of Horticulture Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR, USA

Contact the author*

Keywords

thiophenols, guaiacol, chitosan, pectin, coating

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.