terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Decoupling the effects of water and heat stress on Sauvignon blanc berries

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Abstract

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers. The expression of the main genes involved in the biosynthesis of thiol precursors, together with stress marker genes, was evaluated on the berries by qRT-PCR. Moreover, thiol precursors were analysed using an UHPLC/MS method. Results highlighted variable trends in the genes encoding GSTs (glutathione-S-transferase) and GGTs (γ-glutamyl-transferase), responsible for the synthesis of precursors. In detail, the VvGST3 gene was significantly down-regulated in thermal stresses, while HS and WSHS up-regulated the expression of VvGST2, VvGST5, VvGST25 and GGTs. Furthermore, the tested stress marker genes significantly confirm the success of both thermal and water stress conditions. The analysis of thiol precursors, showed that the concentration of Cys-3SH in the two last sampling dates well correlated with the expression of the above-mentioned genes. As opposite, a poor correlation was observed for Glut-3SH. Taken together these results allowed to identify a specific effect of heat and water stress on the regulation of the thiol precursors biosynthetic pathway in Sauvignon blanc berries during maturation.  

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alberto Calderan1,2, Rachele Falchi2, Riccardo Braidotti2, Giorgio Alberti2, Andreja Vanzo3 and Paolo Sivilotti2

1Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy
2Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle     Scienze 206, 33100 Udine, Italy
3Kmetijski Istitut Slovenje (KIS), Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia

Contact the author*

Keywords

water stress, heat stress, climate change, berries culture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.