terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Decoupling the effects of water and heat stress on Sauvignon blanc berries

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Abstract

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers. The expression of the main genes involved in the biosynthesis of thiol precursors, together with stress marker genes, was evaluated on the berries by qRT-PCR. Moreover, thiol precursors were analysed using an UHPLC/MS method. Results highlighted variable trends in the genes encoding GSTs (glutathione-S-transferase) and GGTs (γ-glutamyl-transferase), responsible for the synthesis of precursors. In detail, the VvGST3 gene was significantly down-regulated in thermal stresses, while HS and WSHS up-regulated the expression of VvGST2, VvGST5, VvGST25 and GGTs. Furthermore, the tested stress marker genes significantly confirm the success of both thermal and water stress conditions. The analysis of thiol precursors, showed that the concentration of Cys-3SH in the two last sampling dates well correlated with the expression of the above-mentioned genes. As opposite, a poor correlation was observed for Glut-3SH. Taken together these results allowed to identify a specific effect of heat and water stress on the regulation of the thiol precursors biosynthetic pathway in Sauvignon blanc berries during maturation.  

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alberto Calderan1,2, Rachele Falchi2, Riccardo Braidotti2, Giorgio Alberti2, Andreja Vanzo3 and Paolo Sivilotti2

1Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy
2Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle     Scienze 206, 33100 Udine, Italy
3Kmetijski Istitut Slovenje (KIS), Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia

Contact the author*

Keywords

water stress, heat stress, climate change, berries culture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.