terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Decoupling the effects of water and heat stress on Sauvignon blanc berries

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Abstract

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers. The expression of the main genes involved in the biosynthesis of thiol precursors, together with stress marker genes, was evaluated on the berries by qRT-PCR. Moreover, thiol precursors were analysed using an UHPLC/MS method. Results highlighted variable trends in the genes encoding GSTs (glutathione-S-transferase) and GGTs (γ-glutamyl-transferase), responsible for the synthesis of precursors. In detail, the VvGST3 gene was significantly down-regulated in thermal stresses, while HS and WSHS up-regulated the expression of VvGST2, VvGST5, VvGST25 and GGTs. Furthermore, the tested stress marker genes significantly confirm the success of both thermal and water stress conditions. The analysis of thiol precursors, showed that the concentration of Cys-3SH in the two last sampling dates well correlated with the expression of the above-mentioned genes. As opposite, a poor correlation was observed for Glut-3SH. Taken together these results allowed to identify a specific effect of heat and water stress on the regulation of the thiol precursors biosynthetic pathway in Sauvignon blanc berries during maturation.  

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alberto Calderan1,2, Rachele Falchi2, Riccardo Braidotti2, Giorgio Alberti2, Andreja Vanzo3 and Paolo Sivilotti2

1Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy
2Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle     Scienze 206, 33100 Udine, Italy
3Kmetijski Istitut Slovenje (KIS), Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia

Contact the author*

Keywords

water stress, heat stress, climate change, berries culture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.