terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Quantifying water use diversity across grapevine rootstock-scion combinations

Quantifying water use diversity across grapevine rootstock-scion combinations

Abstract

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis. The measurements were performed at the GreffAdapt experimental vineyard of ISVV in the following variety-rootstock combinations: Grenache, Syrah and Cabernet-Sauvignon cv. grafted onto the rootstocks 110R, 1103P, M4, SO4, 5BB, and 140Ru. Preliminary results show a significant effect of the rootstock, particularly on stomatal conductance and to a lesser extent on the quantum yield of photosystem II (ᶲPSII). Some rootstocks appear to result in much lower levels of gs and quantum yield of photosystem II (ᶲPSII), suggesting a higher sensitivity to water stress and/or a water use strategy to balance water status at the expense of photochemistry energy utilization. These results will be integrated with vigor and yield parameters to achieve a comprehensive insight of rootstock-genotypes response under applied contexts. Furthermore, these data highlight the importance of exploring the plasticity of existing rootstock-scions combinations and ultimately providing winegrowers with the knowledge and tools to adapt their vineyards to future environmental constraints.

Acknowledgements: This work was supported by the Sustainable Crop Production (FACCEJPI) -ERA-NET Cofund Action (Ref. Nr 59 – DIVERGRAPE) under H2020 Horizon Europe programme.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sara Bernardo1*, Marine Morel1, Elisa Marguerit1, Gregory A. Gambetta1

1EGFV – ISVV, INRAE, 210 Chemin De Leysotte, 33882 Villenave D’Ornon, France

Contact the author*

Keywords

chlorophyll fluorescence, grapevine, stomatal conductance, stress response

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.