terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Quantifying water use diversity across grapevine rootstock-scion combinations

Quantifying water use diversity across grapevine rootstock-scion combinations

Abstract

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis. The measurements were performed at the GreffAdapt experimental vineyard of ISVV in the following variety-rootstock combinations: Grenache, Syrah and Cabernet-Sauvignon cv. grafted onto the rootstocks 110R, 1103P, M4, SO4, 5BB, and 140Ru. Preliminary results show a significant effect of the rootstock, particularly on stomatal conductance and to a lesser extent on the quantum yield of photosystem II (ᶲPSII). Some rootstocks appear to result in much lower levels of gs and quantum yield of photosystem II (ᶲPSII), suggesting a higher sensitivity to water stress and/or a water use strategy to balance water status at the expense of photochemistry energy utilization. These results will be integrated with vigor and yield parameters to achieve a comprehensive insight of rootstock-genotypes response under applied contexts. Furthermore, these data highlight the importance of exploring the plasticity of existing rootstock-scions combinations and ultimately providing winegrowers with the knowledge and tools to adapt their vineyards to future environmental constraints.

Acknowledgements: This work was supported by the Sustainable Crop Production (FACCEJPI) -ERA-NET Cofund Action (Ref. Nr 59 – DIVERGRAPE) under H2020 Horizon Europe programme.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sara Bernardo1*, Marine Morel1, Elisa Marguerit1, Gregory A. Gambetta1

1EGFV – ISVV, INRAE, 210 Chemin De Leysotte, 33882 Villenave D’Ornon, France

Contact the author*

Keywords

chlorophyll fluorescence, grapevine, stomatal conductance, stress response

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.