terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Quantifying water use diversity across grapevine rootstock-scion combinations

Quantifying water use diversity across grapevine rootstock-scion combinations

Abstract

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis. The measurements were performed at the GreffAdapt experimental vineyard of ISVV in the following variety-rootstock combinations: Grenache, Syrah and Cabernet-Sauvignon cv. grafted onto the rootstocks 110R, 1103P, M4, SO4, 5BB, and 140Ru. Preliminary results show a significant effect of the rootstock, particularly on stomatal conductance and to a lesser extent on the quantum yield of photosystem II (ᶲPSII). Some rootstocks appear to result in much lower levels of gs and quantum yield of photosystem II (ᶲPSII), suggesting a higher sensitivity to water stress and/or a water use strategy to balance water status at the expense of photochemistry energy utilization. These results will be integrated with vigor and yield parameters to achieve a comprehensive insight of rootstock-genotypes response under applied contexts. Furthermore, these data highlight the importance of exploring the plasticity of existing rootstock-scions combinations and ultimately providing winegrowers with the knowledge and tools to adapt their vineyards to future environmental constraints.

Acknowledgements: This work was supported by the Sustainable Crop Production (FACCEJPI) -ERA-NET Cofund Action (Ref. Nr 59 – DIVERGRAPE) under H2020 Horizon Europe programme.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sara Bernardo1*, Marine Morel1, Elisa Marguerit1, Gregory A. Gambetta1

1EGFV – ISVV, INRAE, 210 Chemin De Leysotte, 33882 Villenave D’Ornon, France

Contact the author*

Keywords

chlorophyll fluorescence, grapevine, stomatal conductance, stress response

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.