terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Abstract

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

The principal component analysis (PCA) showed that the four treatments were separated at the level of aromatic compounds families. Wine from ABA treatment, without temperature increase, was characterized by high concentrations of volatile phenols, alcohols, and free C13-norisoprenoids. On the opposite side, wine of ABA treatment, with 3 ºC rise, was characterized by high concentration of C6-alcohols, terpenes and lactones. On the other hand, wine from control treatment with 3 ºC rise was located in the negative parts of both axes, showing a very low contents of all the compounds. While wine from control treatment without temperature increase showed higher concentration of C13-norisoprenoid, alcohols and volatile phenols vs control nevertheless lower than ABA. These results suggest that global warming has a negative impact on the aromatic composition of Malbec Argentinean wines, while ABA could play an important role as a mitigation tool.

Acknowledgements: H2020-MSCA-RISE-2019: vWISE Project, Number 872394. We also thank to ICVV analytical service.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Liliana Martínez1*, Bianca Costa2, Leonor Deis1, Marta Dizy2,3, and Mar Vilanova2

1Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátera de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, M5528AHB Mendoza, Argentina
2Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja, España
3Universidad de La Rioja, Departamento de Agricultura y Alimentación, C/ Madre de Dios, 51, 26006 Logroño, La Rioja, España

Contact the author*

Keywords

Malbec wine, climate change, aromatic compounds, abscisic acid

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.