terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Abstract

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

The principal component analysis (PCA) showed that the four treatments were separated at the level of aromatic compounds families. Wine from ABA treatment, without temperature increase, was characterized by high concentrations of volatile phenols, alcohols, and free C13-norisoprenoids. On the opposite side, wine of ABA treatment, with 3 ºC rise, was characterized by high concentration of C6-alcohols, terpenes and lactones. On the other hand, wine from control treatment with 3 ºC rise was located in the negative parts of both axes, showing a very low contents of all the compounds. While wine from control treatment without temperature increase showed higher concentration of C13-norisoprenoid, alcohols and volatile phenols vs control nevertheless lower than ABA. These results suggest that global warming has a negative impact on the aromatic composition of Malbec Argentinean wines, while ABA could play an important role as a mitigation tool.

Acknowledgements: H2020-MSCA-RISE-2019: vWISE Project, Number 872394. We also thank to ICVV analytical service.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Liliana Martínez1*, Bianca Costa2, Leonor Deis1, Marta Dizy2,3, and Mar Vilanova2

1Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátera de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, M5528AHB Mendoza, Argentina
2Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja, España
3Universidad de La Rioja, Departamento de Agricultura y Alimentación, C/ Madre de Dios, 51, 26006 Logroño, La Rioja, España

Contact the author*

Keywords

Malbec wine, climate change, aromatic compounds, abscisic acid

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.