terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Abstract

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability. Sigmoid curves were employed to model the impact of water potential on stomatal conductance (gs) and embolism in shoots. These curves determined the water potential at which gs decreased by 50% () and the water potential at which air extraction from shoots increased by 50% (). Pressure-volume curves estimated the water potential at which leaf turgor loss occurred ().

Additionally, sigmoid curves described the effect of decreased water potential on yield per plant. Results showed that Chardonnay exhibited earlier reduction in gs under moderate water stress compared to Sauvignon blanc, with the latter demonstrating greater water stress tolerance (). S. Blanc maintained higher gs and gas exchange under limited water availability, enabling a 50% reduction in yield per plant () even under low water availability conditions. In contrast, Chardonnay experienced cellular turgor loss () and impaired water conduction in shoots () at lower water availability than S. Blanc, potentially due to a larger hydro-escape area. Overall, cultivars’ capacity to sustain yield per plant under moderate water deficit conditions () was identified as a differentiating metric for cultivars. However, considering the cultivar’s potential yield is crucial to determine the economic viability of partial yield maintenance under a water deficit.

Acknowledgements: Fruit tree physiology Laboratory, ANID Human Capital program.

References:

  1. Henry, C., John, G. P., Pan, R., Bartlett, M. K., Fletcher, L. R., Scoffoni, C., & Sack, L. (2019). A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11006-1
  2. Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658–4676. https://doi.org/10.1093/jxb/eraa245

Fig. 1 Hydroscape area                                                                                  

Fig. 2 Metrics representing response to drought

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Felipe Suárez-Vega1*, Bastián Silva-Gutiérrez¹, Benjamín Velásquez¹, Felipe Torres-Pérez¹, Jose Alcalde, Alonso Pérez-Donoso¹

1Departamento de Fruticultura & Enología, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile

Contact the author*

Keywords

drought, viticulture, gas exchange, water potential

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.