terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Abstract

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability. Sigmoid curves were employed to model the impact of water potential on stomatal conductance (gs) and embolism in shoots. These curves determined the water potential at which gs decreased by 50% () and the water potential at which air extraction from shoots increased by 50% (). Pressure-volume curves estimated the water potential at which leaf turgor loss occurred ().

Additionally, sigmoid curves described the effect of decreased water potential on yield per plant. Results showed that Chardonnay exhibited earlier reduction in gs under moderate water stress compared to Sauvignon blanc, with the latter demonstrating greater water stress tolerance (). S. Blanc maintained higher gs and gas exchange under limited water availability, enabling a 50% reduction in yield per plant () even under low water availability conditions. In contrast, Chardonnay experienced cellular turgor loss () and impaired water conduction in shoots () at lower water availability than S. Blanc, potentially due to a larger hydro-escape area. Overall, cultivars’ capacity to sustain yield per plant under moderate water deficit conditions () was identified as a differentiating metric for cultivars. However, considering the cultivar’s potential yield is crucial to determine the economic viability of partial yield maintenance under a water deficit.

Acknowledgements: Fruit tree physiology Laboratory, ANID Human Capital program.

References:

  1. Henry, C., John, G. P., Pan, R., Bartlett, M. K., Fletcher, L. R., Scoffoni, C., & Sack, L. (2019). A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11006-1
  2. Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658–4676. https://doi.org/10.1093/jxb/eraa245

Fig. 1 Hydroscape area                                                                                  

Fig. 2 Metrics representing response to drought

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Felipe Suárez-Vega1*, Bastián Silva-Gutiérrez¹, Benjamín Velásquez¹, Felipe Torres-Pérez¹, Jose Alcalde, Alonso Pérez-Donoso¹

1Departamento de Fruticultura & Enología, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile

Contact the author*

Keywords

drought, viticulture, gas exchange, water potential

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.