terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

Abstract

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability. Sigmoid curves were employed to model the impact of water potential on stomatal conductance (gs) and embolism in shoots. These curves determined the water potential at which gs decreased by 50% () and the water potential at which air extraction from shoots increased by 50% (). Pressure-volume curves estimated the water potential at which leaf turgor loss occurred ().

Additionally, sigmoid curves described the effect of decreased water potential on yield per plant. Results showed that Chardonnay exhibited earlier reduction in gs under moderate water stress compared to Sauvignon blanc, with the latter demonstrating greater water stress tolerance (). S. Blanc maintained higher gs and gas exchange under limited water availability, enabling a 50% reduction in yield per plant () even under low water availability conditions. In contrast, Chardonnay experienced cellular turgor loss () and impaired water conduction in shoots () at lower water availability than S. Blanc, potentially due to a larger hydro-escape area. Overall, cultivars’ capacity to sustain yield per plant under moderate water deficit conditions () was identified as a differentiating metric for cultivars. However, considering the cultivar’s potential yield is crucial to determine the economic viability of partial yield maintenance under a water deficit.

Acknowledgements: Fruit tree physiology Laboratory, ANID Human Capital program.

References:

  1. Henry, C., John, G. P., Pan, R., Bartlett, M. K., Fletcher, L. R., Scoffoni, C., & Sack, L. (2019). A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11006-1
  2. Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658–4676. https://doi.org/10.1093/jxb/eraa245

Fig. 1 Hydroscape area                                                                                  

Fig. 2 Metrics representing response to drought

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Felipe Suárez-Vega1*, Bastián Silva-Gutiérrez¹, Benjamín Velásquez¹, Felipe Torres-Pérez¹, Jose Alcalde, Alonso Pérez-Donoso¹

1Departamento de Fruticultura & Enología, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile

Contact the author*

Keywords

drought, viticulture, gas exchange, water potential

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].