terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Abstract

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

The objective of this work was to determine the effect of two plant fibers in the reduction of undesirable compounds and to correlate their behavior with their polysaccharide composition, analyzed using comprehensive microarray polymer profiling (CoMPP). [2] The results showed that a white grape pomace fiber presented the highest capacity for histamine reduction in wine and also reduced large amounts of pesticides, although the highest effectiveness to remove pesticides residues was found when a cereal fiber was used. Looking for a correlation between effectivity and composition, we could see how grape fiber contained high contents of pectic polysaccharides, xyloglucans and arabinogalactan proteins (AGP) whereas the behavior of cereal fiber can only be associated to its xylan content, since the pectic polysaccharides were absent. This was a surprising finding since it is known that fibers may affect wine color due to the high affinity of their polysaccharides, especially pectic polysaccharides for polyphenols, but when looking at the effect of these two fibers on wine chromatic characteristics, the cereal fiber largely affected wine color, more than the grape pomace fiber, so another factor, such as the porosity of the fiber, must also be an important fact regarding their effectiveness.

References:

  1. Jiménez-Martínez M.D. et al. (2018). Performance of purified grape pomace as a fining agent to reduce the levels of some contaminants from wine. Food Addit. Contam. Part A, 35 (6): 1061–1070, DOI.org/10.1080/19440049.2018.1459050
  2. Moller, I. et al. (2008). High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J., 25(1): 37–48, DOI: 10.1007/s10719-007-9059-7

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lucía Osete Alcaraz1, Encarna Gómez Plaza1, Paula Pérez Porras1, Bodil Jørgensen2, José Oliva Ortiz3, Miguel Ángel Cámara Botía3, Ricardo Jurado Fuentes4, Ana Belén Bautista Ortín1*

1 Departamento de Tecnología de Alimentos, Facultad de Veterinaria, Universidad de Murcia, 30071, Murcia, España
2 Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
3 Departamento de Química Agrícola, Facultad de Química, Universidad de Murcia
4 Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, España

Contact the author*

Keywords

wine, fining, vegetal fiber, polysaccharides, CoMPP

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.