terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Abstract

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

The objective of this work was to determine the effect of two plant fibers in the reduction of undesirable compounds and to correlate their behavior with their polysaccharide composition, analyzed using comprehensive microarray polymer profiling (CoMPP). [2] The results showed that a white grape pomace fiber presented the highest capacity for histamine reduction in wine and also reduced large amounts of pesticides, although the highest effectiveness to remove pesticides residues was found when a cereal fiber was used. Looking for a correlation between effectivity and composition, we could see how grape fiber contained high contents of pectic polysaccharides, xyloglucans and arabinogalactan proteins (AGP) whereas the behavior of cereal fiber can only be associated to its xylan content, since the pectic polysaccharides were absent. This was a surprising finding since it is known that fibers may affect wine color due to the high affinity of their polysaccharides, especially pectic polysaccharides for polyphenols, but when looking at the effect of these two fibers on wine chromatic characteristics, the cereal fiber largely affected wine color, more than the grape pomace fiber, so another factor, such as the porosity of the fiber, must also be an important fact regarding their effectiveness.

References:

  1. Jiménez-Martínez M.D. et al. (2018). Performance of purified grape pomace as a fining agent to reduce the levels of some contaminants from wine. Food Addit. Contam. Part A, 35 (6): 1061–1070, DOI.org/10.1080/19440049.2018.1459050
  2. Moller, I. et al. (2008). High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J., 25(1): 37–48, DOI: 10.1007/s10719-007-9059-7

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lucía Osete Alcaraz1, Encarna Gómez Plaza1, Paula Pérez Porras1, Bodil Jørgensen2, José Oliva Ortiz3, Miguel Ángel Cámara Botía3, Ricardo Jurado Fuentes4, Ana Belén Bautista Ortín1*

1 Departamento de Tecnología de Alimentos, Facultad de Veterinaria, Universidad de Murcia, 30071, Murcia, España
2 Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
3 Departamento de Química Agrícola, Facultad de Química, Universidad de Murcia
4 Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, España

Contact the author*

Keywords

wine, fining, vegetal fiber, polysaccharides, CoMPP

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.