terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

Abstract

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

The objective of this work was to determine the effect of two plant fibers in the reduction of undesirable compounds and to correlate their behavior with their polysaccharide composition, analyzed using comprehensive microarray polymer profiling (CoMPP). [2] The results showed that a white grape pomace fiber presented the highest capacity for histamine reduction in wine and also reduced large amounts of pesticides, although the highest effectiveness to remove pesticides residues was found when a cereal fiber was used. Looking for a correlation between effectivity and composition, we could see how grape fiber contained high contents of pectic polysaccharides, xyloglucans and arabinogalactan proteins (AGP) whereas the behavior of cereal fiber can only be associated to its xylan content, since the pectic polysaccharides were absent. This was a surprising finding since it is known that fibers may affect wine color due to the high affinity of their polysaccharides, especially pectic polysaccharides for polyphenols, but when looking at the effect of these two fibers on wine chromatic characteristics, the cereal fiber largely affected wine color, more than the grape pomace fiber, so another factor, such as the porosity of the fiber, must also be an important fact regarding their effectiveness.

References:

  1. Jiménez-Martínez M.D. et al. (2018). Performance of purified grape pomace as a fining agent to reduce the levels of some contaminants from wine. Food Addit. Contam. Part A, 35 (6): 1061–1070, DOI.org/10.1080/19440049.2018.1459050
  2. Moller, I. et al. (2008). High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J., 25(1): 37–48, DOI: 10.1007/s10719-007-9059-7

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lucía Osete Alcaraz1, Encarna Gómez Plaza1, Paula Pérez Porras1, Bodil Jørgensen2, José Oliva Ortiz3, Miguel Ángel Cámara Botía3, Ricardo Jurado Fuentes4, Ana Belén Bautista Ortín1*

1 Departamento de Tecnología de Alimentos, Facultad de Veterinaria, Universidad de Murcia, 30071, Murcia, España
2 Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
3 Departamento de Química Agrícola, Facultad de Química, Universidad de Murcia
4 Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, España

Contact the author*

Keywords

wine, fining, vegetal fiber, polysaccharides, CoMPP

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.