terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

Abstract

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1]. The type of grain is of great importance and is one of the criteria used in cooperages when choosing the wood used for barrels. This parameter depends on the botanical and geographical origin of the trees. Grain refers to the size and regularity of the tree’s annual growth rings [2].

The aim of this study was to analyse the effect of toasting (Light Toasting – TL, Medium Toasting – TM and Medium-Long Toasting – TML) and grain (Standard Grain – GE and Extra Fine Grain – GX) on the volatile compounds of Tempranillo red wines aged in new 225 L Quercus petraea barrels with different toasting and grain types. Tempranillo red wine was made using the traditional red vinification method at Bodegas Ramón Bilbao S.A. Volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS) after extraction by liquid–liquid.

There are already studies on the influence of toasting in red wines, but very few that have evaluated the effect of grain and less that have evaluated the influence of these two parameters together in red wines aged in oak barrels, as is the case here. Therefore, it is considered that this study may prove to be novel.

References

  1. Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the Botanical Origin and Toasting Level on the Ellagitannin Content of Wines Aged in New and Used Oak Barrels. Food Research International 2016, 87, 197–203, doi:10.1016/J.FOODRES.2016.07.016.
  2. Zamora, F. Barrel Aging; Types of Wood. In Red Wine Technology; Elsevier, 2018; pp. 125–147 ISBN 9780128144008. 

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mikel Landín Ross-Magahy1, Ekhiñe Garaigordobil2, Samuel Mateo2, Feng Zhao2, Leticia Martínez-Lapuente2 and Belén Ayestarán2, Zenaida Guadalupe2

Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Spain

Contact the author*

Keywords

toasting effect, Grain effect, red wine, oak barrels, ageing, Quercus petraea

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.