terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

Abstract

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1]. The type of grain is of great importance and is one of the criteria used in cooperages when choosing the wood used for barrels. This parameter depends on the botanical and geographical origin of the trees. Grain refers to the size and regularity of the tree’s annual growth rings [2].

The aim of this study was to analyse the effect of toasting (Light Toasting – TL, Medium Toasting – TM and Medium-Long Toasting – TML) and grain (Standard Grain – GE and Extra Fine Grain – GX) on the volatile compounds of Tempranillo red wines aged in new 225 L Quercus petraea barrels with different toasting and grain types. Tempranillo red wine was made using the traditional red vinification method at Bodegas Ramón Bilbao S.A. Volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS) after extraction by liquid–liquid.

There are already studies on the influence of toasting in red wines, but very few that have evaluated the effect of grain and less that have evaluated the influence of these two parameters together in red wines aged in oak barrels, as is the case here. Therefore, it is considered that this study may prove to be novel.

References

  1. Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the Botanical Origin and Toasting Level on the Ellagitannin Content of Wines Aged in New and Used Oak Barrels. Food Research International 2016, 87, 197–203, doi:10.1016/J.FOODRES.2016.07.016.
  2. Zamora, F. Barrel Aging; Types of Wood. In Red Wine Technology; Elsevier, 2018; pp. 125–147 ISBN 9780128144008. 

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mikel Landín Ross-Magahy1, Ekhiñe Garaigordobil2, Samuel Mateo2, Feng Zhao2, Leticia Martínez-Lapuente2 and Belén Ayestarán2, Zenaida Guadalupe2

Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Spain

Contact the author*

Keywords

toasting effect, Grain effect, red wine, oak barrels, ageing, Quercus petraea

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.