terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

Abstract

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1]. The type of grain is of great importance and is one of the criteria used in cooperages when choosing the wood used for barrels. This parameter depends on the botanical and geographical origin of the trees. Grain refers to the size and regularity of the tree’s annual growth rings [2].

The aim of this study was to analyse the effect of toasting (Light Toasting – TL, Medium Toasting – TM and Medium-Long Toasting – TML) and grain (Standard Grain – GE and Extra Fine Grain – GX) on the volatile compounds of Tempranillo red wines aged in new 225 L Quercus petraea barrels with different toasting and grain types. Tempranillo red wine was made using the traditional red vinification method at Bodegas Ramón Bilbao S.A. Volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS) after extraction by liquid–liquid.

There are already studies on the influence of toasting in red wines, but very few that have evaluated the effect of grain and less that have evaluated the influence of these two parameters together in red wines aged in oak barrels, as is the case here. Therefore, it is considered that this study may prove to be novel.

References

  1. Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the Botanical Origin and Toasting Level on the Ellagitannin Content of Wines Aged in New and Used Oak Barrels. Food Research International 2016, 87, 197–203, doi:10.1016/J.FOODRES.2016.07.016.
  2. Zamora, F. Barrel Aging; Types of Wood. In Red Wine Technology; Elsevier, 2018; pp. 125–147 ISBN 9780128144008. 

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mikel Landín Ross-Magahy1, Ekhiñe Garaigordobil2, Samuel Mateo2, Feng Zhao2, Leticia Martínez-Lapuente2 and Belén Ayestarán2, Zenaida Guadalupe2

Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Spain

Contact the author*

Keywords

toasting effect, Grain effect, red wine, oak barrels, ageing, Quercus petraea

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].