terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Abstract

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective. This technique consists of trimming the developed primary shoots at the end of flowering, above the node number seven. The aim of this work was to evaluate the effect of SSP under drought conditions and high temperatures on the ‘Tempranillo’ wine phenolic composition compared with non-trimming vines (NT) grown under conventional practices (just winter pruning) during the 2022 season. None of the treatments were irrigated. The wines were elaborated according to traditional red wine-making method and their general and chromatic parameters were analysed. Respect to NT, the SSP treatment showed slightly lower ethanol content and significantly reduced the dry extract, pH, malic acid and potassium, total phenolic content and color intensity values. When the polyphenolic profile of wine was analysed by HPLC techniques, respect to NT wines, the SSP ones showed an increase in coumarilated anthocyanins, and a decrease in the concentration of monoglucoside anthocyanins, flavonols, phenolics acids and total anthocyanins content. In conclusion, under these study conditions (including non-irrigation, extremes temperatures and dry weather), severe pruning of the vine shoots was not effective in improving the phenolic profile of the wine. It would therefore be necessary to analyse this technique accompanied by supportive irrigation during the ripening cycle of the grapes.

Acknowledgements: This research was supported by funds from Project IB20082, the ERDF, Junta de Extremadura, AGA001 (GR21196) and Investigo Program, financed by The Recovery and Resilience Facility. The authors would like to thank Bodegas Viñas De Alange S.A. for their collaboration.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lavado N1*, Dorado M.J1, Mancha L.A1, Valdés M.E1, Uriarte D1, Guerra M.T2, Fondón-Aguilar A1, Moreno D1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Centro Universitario Santa Ana (CUSA). IX Marqués de la Encomienda, 2, 06200 Almendralejo, Badajoz

Contact the author*

Keywords

anthocyanin, flavanol, flavonol, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.