terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Abstract

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective. This technique consists of trimming the developed primary shoots at the end of flowering, above the node number seven. The aim of this work was to evaluate the effect of SSP under drought conditions and high temperatures on the ‘Tempranillo’ wine phenolic composition compared with non-trimming vines (NT) grown under conventional practices (just winter pruning) during the 2022 season. None of the treatments were irrigated. The wines were elaborated according to traditional red wine-making method and their general and chromatic parameters were analysed. Respect to NT, the SSP treatment showed slightly lower ethanol content and significantly reduced the dry extract, pH, malic acid and potassium, total phenolic content and color intensity values. When the polyphenolic profile of wine was analysed by HPLC techniques, respect to NT wines, the SSP ones showed an increase in coumarilated anthocyanins, and a decrease in the concentration of monoglucoside anthocyanins, flavonols, phenolics acids and total anthocyanins content. In conclusion, under these study conditions (including non-irrigation, extremes temperatures and dry weather), severe pruning of the vine shoots was not effective in improving the phenolic profile of the wine. It would therefore be necessary to analyse this technique accompanied by supportive irrigation during the ripening cycle of the grapes.

Acknowledgements: This research was supported by funds from Project IB20082, the ERDF, Junta de Extremadura, AGA001 (GR21196) and Investigo Program, financed by The Recovery and Resilience Facility. The authors would like to thank Bodegas Viñas De Alange S.A. for their collaboration.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lavado N1*, Dorado M.J1, Mancha L.A1, Valdés M.E1, Uriarte D1, Guerra M.T2, Fondón-Aguilar A1, Moreno D1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Centro Universitario Santa Ana (CUSA). IX Marqués de la Encomienda, 2, 06200 Almendralejo, Badajoz

Contact the author*

Keywords

anthocyanin, flavanol, flavonol, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.