terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

Abstract

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective. This technique consists of trimming the developed primary shoots at the end of flowering, above the node number seven. The aim of this work was to evaluate the effect of SSP under drought conditions and high temperatures on the ‘Tempranillo’ wine phenolic composition compared with non-trimming vines (NT) grown under conventional practices (just winter pruning) during the 2022 season. None of the treatments were irrigated. The wines were elaborated according to traditional red wine-making method and their general and chromatic parameters were analysed. Respect to NT, the SSP treatment showed slightly lower ethanol content and significantly reduced the dry extract, pH, malic acid and potassium, total phenolic content and color intensity values. When the polyphenolic profile of wine was analysed by HPLC techniques, respect to NT wines, the SSP ones showed an increase in coumarilated anthocyanins, and a decrease in the concentration of monoglucoside anthocyanins, flavonols, phenolics acids and total anthocyanins content. In conclusion, under these study conditions (including non-irrigation, extremes temperatures and dry weather), severe pruning of the vine shoots was not effective in improving the phenolic profile of the wine. It would therefore be necessary to analyse this technique accompanied by supportive irrigation during the ripening cycle of the grapes.

Acknowledgements: This research was supported by funds from Project IB20082, the ERDF, Junta de Extremadura, AGA001 (GR21196) and Investigo Program, financed by The Recovery and Resilience Facility. The authors would like to thank Bodegas Viñas De Alange S.A. for their collaboration.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Lavado N1*, Dorado M.J1, Mancha L.A1, Valdés M.E1, Uriarte D1, Guerra M.T2, Fondón-Aguilar A1, Moreno D1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Centro Universitario Santa Ana (CUSA). IX Marqués de la Encomienda, 2, 06200 Almendralejo, Badajoz

Contact the author*

Keywords

anthocyanin, flavanol, flavonol, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.