terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

Abstract

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system. Passing through the valve causes a series of mechanical forces (impact, shear, cavitation, friction) which produce an antimicrobial and anti-enzymatic effect, as well as nanofragmentation in biopolymers. Since both, phenolic composition and PPO activity, depend on the variety, the research of the response of musts from different varieties to this technique is essential. This work investigates, by using HPLC techniques, the response of polyphenol oxidase activity, flavonols, flavanols, phenolic acids and total phenols to the application of a) the UHPH technique (working flow rate: 60 L/h, at 300 ± 3 MPa, inlet T of 4ºC, in-valve T of 95 ± 2 ºC for less than 0.2 s and an outlet T of 14 ºC) and b) SO2 (total dose 60 mg/L) of musts of Xarel·lo (Xar), Moscatel de Alexandria (M) and Garnacha blanca (Gb) from the 2022 vintage. The impact of the techniques applied depended on the variety considered and the effectiveness of UHPH could be established in the following pattern: Xar ≥ M > Gb. Moreover, phenolic acids were more sensitive to the action of SO2 than the UHPH. In general, with the exception of M must, phenolic acids, flavanols and total phenols responded similarly to both treatments applied.

Acknowledgements: This work is founded by Operational Groups of the European Association for Innovation (AEI) in terms of agricultural productivity and sustainability (operation 16.01.01 of the Rural Development Program of Catalonia (PDR) 2014-2022). Generalitat de Catalunya.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Esperanza Valdés-Sánchez1, Daniel Moreno-Cardona1, Nieves Lavado-Rodas1, Angela Fondon-Aguilar1, Gemma Roca-Domènech2 and Anna Puig-Pujol2

1Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, Spain
2INCAVI-IRTA. Catalan Institute of Vine and Wine – Institute of Agrifood Research and Technology. Plaça Àgora, 2. 08720 Vilafranca del Penedès, Barcelona, Spain

Contact the author*

Keywords

Xarel·lo, Moscatel, Garnacha blanca, flavonols, flavanols, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.