terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

Abstract

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system. Passing through the valve causes a series of mechanical forces (impact, shear, cavitation, friction) which produce an antimicrobial and anti-enzymatic effect, as well as nanofragmentation in biopolymers. Since both, phenolic composition and PPO activity, depend on the variety, the research of the response of musts from different varieties to this technique is essential. This work investigates, by using HPLC techniques, the response of polyphenol oxidase activity, flavonols, flavanols, phenolic acids and total phenols to the application of a) the UHPH technique (working flow rate: 60 L/h, at 300 ± 3 MPa, inlet T of 4ºC, in-valve T of 95 ± 2 ºC for less than 0.2 s and an outlet T of 14 ºC) and b) SO2 (total dose 60 mg/L) of musts of Xarel·lo (Xar), Moscatel de Alexandria (M) and Garnacha blanca (Gb) from the 2022 vintage. The impact of the techniques applied depended on the variety considered and the effectiveness of UHPH could be established in the following pattern: Xar ≥ M > Gb. Moreover, phenolic acids were more sensitive to the action of SO2 than the UHPH. In general, with the exception of M must, phenolic acids, flavanols and total phenols responded similarly to both treatments applied.

Acknowledgements: This work is founded by Operational Groups of the European Association for Innovation (AEI) in terms of agricultural productivity and sustainability (operation 16.01.01 of the Rural Development Program of Catalonia (PDR) 2014-2022). Generalitat de Catalunya.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Esperanza Valdés-Sánchez1, Daniel Moreno-Cardona1, Nieves Lavado-Rodas1, Angela Fondon-Aguilar1, Gemma Roca-Domènech2 and Anna Puig-Pujol2

1Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, Spain
2INCAVI-IRTA. Catalan Institute of Vine and Wine – Institute of Agrifood Research and Technology. Plaça Àgora, 2. 08720 Vilafranca del Penedès, Barcelona, Spain

Contact the author*

Keywords

Xarel·lo, Moscatel, Garnacha blanca, flavonols, flavanols, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).