terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New tool to evaluate color modifications during oxygen consumption in white and red wines

New tool to evaluate color modifications during oxygen consumption in white and red wines

Abstract

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

The results of this study demonstrate that the equipment designed and built is valid for monitoring the kinetics of oxygen consumption with simultaneous measurement of the spectrum in the visible and dissolved oxygen. The application to the study of white and red wines allowed to know the effect of different amounts of oxygen on the chromatic characteristics of white and red wines. The results show that white wines made with Sauvignon Blanc grapes consume all the available oxygen, while Godello wines have a very low oxygen consumption capacity, and wines made with Albillo or Verdejo grapes are in an intermediate situation. In the case of red wines, the great oxygen consumption capacity of the wines made with the Cenicienta or Mencía grape variety stands out compared to the avidity of the Estaladiña or Negro Saurí wines. This information is also closely related to changes in the colour, browning and antioxidant capacity of wines.

References:

  1. Oliveira, C. M., et al. (2011) Oxidation mechanisms occurring in wines. Food Res. Int 44(5), 1115–1126 DOI 10.1016/j.foodres.2011.03.050
  2. Del Alamo-Sanza, M et al (2021) Air saturation methodology proposal for the analysis of wine oxygen consumption kinetics. Food Res. Int, DOI 10.1016/j.foodres.2021.110535

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Maria del Alamo-Sanza*, Marioli Carrasco-Quiroz, Ana Martínez-Gil, María Asensio-Cuadrado, Rubén del Barrio-Galán, Ignacio Nevares

Grupo UVaMOX-Universidad de Valladolid. Avda. Madrid 50. 34001 Palencia, Spain

Contact the author*

Keywords

oxygen uptake, oxygen consumption kinetics, color, wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.