terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New tool to evaluate color modifications during oxygen consumption in white and red wines

New tool to evaluate color modifications during oxygen consumption in white and red wines

Abstract

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

The results of this study demonstrate that the equipment designed and built is valid for monitoring the kinetics of oxygen consumption with simultaneous measurement of the spectrum in the visible and dissolved oxygen. The application to the study of white and red wines allowed to know the effect of different amounts of oxygen on the chromatic characteristics of white and red wines. The results show that white wines made with Sauvignon Blanc grapes consume all the available oxygen, while Godello wines have a very low oxygen consumption capacity, and wines made with Albillo or Verdejo grapes are in an intermediate situation. In the case of red wines, the great oxygen consumption capacity of the wines made with the Cenicienta or Mencía grape variety stands out compared to the avidity of the Estaladiña or Negro Saurí wines. This information is also closely related to changes in the colour, browning and antioxidant capacity of wines.

References:

  1. Oliveira, C. M., et al. (2011) Oxidation mechanisms occurring in wines. Food Res. Int 44(5), 1115–1126 DOI 10.1016/j.foodres.2011.03.050
  2. Del Alamo-Sanza, M et al (2021) Air saturation methodology proposal for the analysis of wine oxygen consumption kinetics. Food Res. Int, DOI 10.1016/j.foodres.2021.110535

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Maria del Alamo-Sanza*, Marioli Carrasco-Quiroz, Ana Martínez-Gil, María Asensio-Cuadrado, Rubén del Barrio-Galán, Ignacio Nevares

Grupo UVaMOX-Universidad de Valladolid. Avda. Madrid 50. 34001 Palencia, Spain

Contact the author*

Keywords

oxygen uptake, oxygen consumption kinetics, color, wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.