terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Inert gases persistence in wine storage tank blanketing

Inert gases persistence in wine storage tank blanketing

Abstract

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours. The industrial solution consists of inerting the gas space by means of an inert gas blanket to avoid contact with air. This procedure can be done with automatic systems that generate an overpressure of inert gas and are able to respond to variations in the filling level of the tanks. This is not common in most wineries and in order to propose an easy and effective system, nitrogen (N2), argon (Ar), and carbon dioxide (CO2), the commonly used inert gases in the wine industry, together with their mixtures, have been compared. The persistence of a gaseous blanket of the inert gas (O2<0.5%)2 in the ullage space of the tank and its ability to reduce the uptake of atmospheric O2 into the wine were analyzed.

In addition to checking which of the five gases tested provided the best protection over time with a simple application, two different application methods were compared. In a third phase, the economic optimization was studied by reducing the amount of gas on the basis of the ability of almost all of these gases to form blankets due to their higher density than air.

Acknowledgements: ITACyL for their financial support to Actividades de Investigación, Promoción de la Innovación y la Transferencia del Conocimiento en Sectores Estratégicos de Castilla y León: SECTOR VITIVINÍCOLA

1 Peynaud E. (1981) Knowing and Making Wine. Wiley

Dharmadhikkari, M. (2016) Use of Inert Gases. Midwest Grape and Wine Industry Institute

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ignacio Nevares*, María Asensio-Cuadrado, Rubén del Barrio-Galán, Elena Pérez-Cardo, Ana Martínez-Gil, Luis Miguel Cárcel and Maria del Alamo-Sanza

Grupo UVaMOX-Universidad de Valladolid. Avda. Madrid 50. 34001 Palencia, Spain

Contact the author*

Keywords

inert gases, blanketing, oxygen, ullage space

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.