terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Abstract

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

In this work, the bacteria present in CM vinifications under different yeast inoculation conditions were studied, in order to evaluate inoculation as a bacterial control strategy. For this purpose, three conditions were assayed: spontaneous fermentation, “pied de cuve”, and active dry yeast (ADY) inoculation.

The results showed that in the non-inoculated wines, a high bacterial population development was present in the tanks, and the finished wines showed high volatile acidity values, which did not occur in the inoculated vinifications. Thus, the control of the yeast population seems to be an effective tool to avoid bacterial alterations in CM vinifications.

Acknowledgements: This study has been financed from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

References:

1)  Bartowsky E. J. (2009) Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol, 48:149-156. https://doi.org/10.1111/j.1472-765X.2008. 02505.x

2)  Santamaría P. et al (2022) Difficulties associated with small-scale production of carbonic maceration wines. Fermentation, 8, 27. https://doi.org/10.3390/fermentation8010027

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. R. Gutiérrez1*, P. Santamaría1, L. González-Arenzana1, P. Garijo1, C. Olarte2, and S. Sanz2

1 ICVV, Instituto de Ciencias de la Vid y el Vino Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca La Grajera, Ctra. LO-20- salida 13, 26071, Logroño, Spain
2 Departamento de Agricultura y Alimentación. Universidad de La Rioja, Spain

Contact the author*

Keywords

carbonic maceration, yeast inoculation, lactic bacteria, acetic bacteria

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.