GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Abstract

Context and purpose of the study – Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions. The aim of the experiment was to study the effect of pre-, and post-veraison water deficit on grape berry phenolic maturity and texture characteristics.

Material and methods – Plants were planted into 50L white plastic containers in a mixture of perlite (20 %), loamy soil (30 %) and peat (50 %) (v/v). Three regimes of water supply were examined: (1) moderate water deficit from berry set until veraison (WD1), (2) moderate water deficit from veraison until harvest (WD2), (3) no water deficit (C). The water deficit treatments defined by the leaf daily stomatal conductance (between
50-150 H2O mmol m-2s-1). Anthocyanin glucosides and flavonols from berry skin were measured by Shimadzu HPLC system, berry texture characteristics were monitored by TA.XT Plus Texture Analyser. Cell and seed maturity indexes (CMI %, SMI %) and basic parameters (yield, sugar concentration, pH, must acidity) were also investigated.

Results – Pre-veraison treatment resulted in the lowest berry and cluster weight. The highest sugar concentration was found in control berries, and it was followed by the WD1 and WD2 treatments. Berries of the well-watered plants presented the lowest phenolic concentration. Pre-veraison water deficit resulted in a sllighty higher concentration of anthocyanin-glucosides compared to post-veraison water deficit. Water restriction during the ripening period induced higher flavonol (ie. quercetin, kaempferol etc.) concentration related to berry skin fresh weight as well as to the whole berry compared to WD1 treatment. Berry skin hardness (Fsk) was the highest in the case WD2 and the lowest was in WD1. Similar results were obtained in the case of berry skin thickness (Spsk). Seed (SMI %) maturity index presented higher values in the case of WD treatments compared to C. Cell maturity index (CMI %) of WD2 was significantly higher than C and WD1, however no differences were found between C and WD1.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Zsolt Zsófi1Ottó Bencsik2, András Szekeres2, Xénia Pálfi3, Ádám Bozó1,Szabolcs Villangó1

(1) Eszterházy Károly University, Department of Viticulture And Oenology, Leányka Str. 6, Eger H-3300 Hungary
(2) University Of Szeged, Department Of Microbiology, Közép Fasor 52., Szeged, H-6726 Hungary, 3eszterházy Károly University, Food And Wine Research Institute, Leányka Str. 6., Eger, H-3300, Hungary

Contact the author

Keywords

water deficit, anthocyanin extractability, phenolic maturity, berry texture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Under-vine cover crops: impact on weed development, yield and grape composition

This study aims to evaluate the interest of using an under-vine cover crop as a sustainable management tool replacing herbicides or tillage to control weeds, evaluating its effects on yield and berry parameters in a semi-arid climate. 
The performance of Trifolium fragiferum as an under-vine cover crop was evaluated in 2018 and 2019 in a Merlot vineyard in

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.