GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Abstract

Context and purpose of the study – Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions. The aim of the experiment was to study the effect of pre-, and post-veraison water deficit on grape berry phenolic maturity and texture characteristics.

Material and methods – Plants were planted into 50L white plastic containers in a mixture of perlite (20 %), loamy soil (30 %) and peat (50 %) (v/v). Three regimes of water supply were examined: (1) moderate water deficit from berry set until veraison (WD1), (2) moderate water deficit from veraison until harvest (WD2), (3) no water deficit (C). The water deficit treatments defined by the leaf daily stomatal conductance (between
50-150 H2O mmol m-2s-1). Anthocyanin glucosides and flavonols from berry skin were measured by Shimadzu HPLC system, berry texture characteristics were monitored by TA.XT Plus Texture Analyser. Cell and seed maturity indexes (CMI %, SMI %) and basic parameters (yield, sugar concentration, pH, must acidity) were also investigated.

Results – Pre-veraison treatment resulted in the lowest berry and cluster weight. The highest sugar concentration was found in control berries, and it was followed by the WD1 and WD2 treatments. Berries of the well-watered plants presented the lowest phenolic concentration. Pre-veraison water deficit resulted in a sllighty higher concentration of anthocyanin-glucosides compared to post-veraison water deficit. Water restriction during the ripening period induced higher flavonol (ie. quercetin, kaempferol etc.) concentration related to berry skin fresh weight as well as to the whole berry compared to WD1 treatment. Berry skin hardness (Fsk) was the highest in the case WD2 and the lowest was in WD1. Similar results were obtained in the case of berry skin thickness (Spsk). Seed (SMI %) maturity index presented higher values in the case of WD treatments compared to C. Cell maturity index (CMI %) of WD2 was significantly higher than C and WD1, however no differences were found between C and WD1.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Zsolt Zsófi1Ottó Bencsik2, András Szekeres2, Xénia Pálfi3, Ádám Bozó1,Szabolcs Villangó1

(1) Eszterházy Károly University, Department of Viticulture And Oenology, Leányka Str. 6, Eger H-3300 Hungary
(2) University Of Szeged, Department Of Microbiology, Közép Fasor 52., Szeged, H-6726 Hungary, 3eszterházy Károly University, Food And Wine Research Institute, Leányka Str. 6., Eger, H-3300, Hungary

Contact the author

Keywords

water deficit, anthocyanin extractability, phenolic maturity, berry texture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.

The evolution of wine appellations in the United States

Le système des appellations d’origine aux Etats-Unis était adopté en 1978 et est entré en vigueur en 1983. Jusqu’à présent, 146 aires viticoles avaient été établies dans 26 états.

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.