terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Abstract

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added. All fermentations were done in triplicate and inoculated with a commercial Saccharomyces cerevisiae strain. A complete inactivation of indigenous yeasts and bacteria was achieved when Xarel·lo grape juice was processed by UHPH. Related to these results, the must treated by the UHPH technique allowed a better implantation of the inoculated S. cerevisiae yeast compared to the C and SO2 fermentations. Concerning fermentative kinetics, UHPH and SO2 fermentations ended up taking 17 days, although SO2 fermentations had a longer lag phase. In addition, C condition did not complete alcoholic fermentations due to the high acetic acid concentration (> 3 g/L) produced by the growth of the indigenous microbiota. Moreover, sensory analysis showed no significant differences between the different fermentations evaluated. So, the UHPH technique allows the production of SO2-free white wine with similar characteristics to standard wine with SO2 addition. 

Acknowledgements: This research has been funded by the project FRUHPH “Application of Ultra High Pressure Homogenization in fruit juices and wines to improve quality and preservation without additives”. Grup Operatiu from Generalitat de Catalunya (PDR 2014-2022).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gemma Roca-Domènech1*, Joan-Miquel Quevedo2, Antonio-José Trujillo3 and Anna Puig-Pujol1

1INCAVI-IRTA. Catalan Institute of Vine and Wine – Institute of Agrifood Research and Technology. Plaça Àgora, 2. 08720 Vilafranca del Penedès, Barcelona, Spain
2Servei de Planta Pilot de Tecnologia dels Aliments and 3Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), CERTA-TECNIO, MALTA-Consolider, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Contact the author*

Keywords

ultra-high pressure homogenization (UHPH), wine technology, microbial inactivation, SO2 reduction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.