terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Abstract

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added. All fermentations were done in triplicate and inoculated with a commercial Saccharomyces cerevisiae strain. A complete inactivation of indigenous yeasts and bacteria was achieved when Xarel·lo grape juice was processed by UHPH. Related to these results, the must treated by the UHPH technique allowed a better implantation of the inoculated S. cerevisiae yeast compared to the C and SO2 fermentations. Concerning fermentative kinetics, UHPH and SO2 fermentations ended up taking 17 days, although SO2 fermentations had a longer lag phase. In addition, C condition did not complete alcoholic fermentations due to the high acetic acid concentration (> 3 g/L) produced by the growth of the indigenous microbiota. Moreover, sensory analysis showed no significant differences between the different fermentations evaluated. So, the UHPH technique allows the production of SO2-free white wine with similar characteristics to standard wine with SO2 addition. 

Acknowledgements: This research has been funded by the project FRUHPH “Application of Ultra High Pressure Homogenization in fruit juices and wines to improve quality and preservation without additives”. Grup Operatiu from Generalitat de Catalunya (PDR 2014-2022).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gemma Roca-Domènech1*, Joan-Miquel Quevedo2, Antonio-José Trujillo3 and Anna Puig-Pujol1

1INCAVI-IRTA. Catalan Institute of Vine and Wine – Institute of Agrifood Research and Technology. Plaça Àgora, 2. 08720 Vilafranca del Penedès, Barcelona, Spain
2Servei de Planta Pilot de Tecnologia dels Aliments and 3Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), CERTA-TECNIO, MALTA-Consolider, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Contact the author*

Keywords

ultra-high pressure homogenization (UHPH), wine technology, microbial inactivation, SO2 reduction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.