terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Abstract

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

In this work, the effects of the addition of a commercial preparation derived from inactivated yeasts (IDY) on the chemical composition and sensory profile of white wines made from three varieties (Tempranillo Blanco, Garnacha Blanca and Viura) from the D.O.Ca. La Rioja (Spain) were evaluated. The IDY preparation containing glutathione (Glutastar, Lallemand, S.L.) was added at a dose of 30 g/Hl to the racked musts.

The obtained results showed differences depending on the grape variety. In Tempranillo Blanco and Viura, the addition of IDY increased the concentration of glutathione and decreased the concentration of catechins and hydroxycinnamic acids. In Viura, some aromatic compounds (amyl alcohols, isoamyl acetate, hexyl acetate and octanoic acid) increased.Overall, the IDY treatment did not influence the organoleptic characteristics of the wines, with slight variety-related modifications in the aromatic profile.

The addition of IDY could be an interesting alternative to slow down oxidation and preserve the aroma of white wines, but its effects have a variety dependence. In this study, the highest antioxidant efficacy was obtained in the Viura variety.

Acknowledgements: This study was co-financed by the European Regional Development Fund (ERDF), granted to the Autonomous Community of La Rioja, within the ERDF Operational Program (2021-2027).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juana Martinez 1, Elisa Baroja1, Lucía González-Arenzana

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja). Finca La Grajera, Carretera de Burgos, km 6, 26071 Logroño, La Rioja, España)

Contact the author*

Keywords

glutathione, specific inactivating yeasts, white wines, oxidation, aroma   

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.