terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Abstract

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

In this work, the effects of the addition of a commercial preparation derived from inactivated yeasts (IDY) on the chemical composition and sensory profile of white wines made from three varieties (Tempranillo Blanco, Garnacha Blanca and Viura) from the D.O.Ca. La Rioja (Spain) were evaluated. The IDY preparation containing glutathione (Glutastar, Lallemand, S.L.) was added at a dose of 30 g/Hl to the racked musts.

The obtained results showed differences depending on the grape variety. In Tempranillo Blanco and Viura, the addition of IDY increased the concentration of glutathione and decreased the concentration of catechins and hydroxycinnamic acids. In Viura, some aromatic compounds (amyl alcohols, isoamyl acetate, hexyl acetate and octanoic acid) increased.Overall, the IDY treatment did not influence the organoleptic characteristics of the wines, with slight variety-related modifications in the aromatic profile.

The addition of IDY could be an interesting alternative to slow down oxidation and preserve the aroma of white wines, but its effects have a variety dependence. In this study, the highest antioxidant efficacy was obtained in the Viura variety.

Acknowledgements: This study was co-financed by the European Regional Development Fund (ERDF), granted to the Autonomous Community of La Rioja, within the ERDF Operational Program (2021-2027).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juana Martinez 1, Elisa Baroja1, Lucía González-Arenzana

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja). Finca La Grajera, Carretera de Burgos, km 6, 26071 Logroño, La Rioja, España)

Contact the author*

Keywords

glutathione, specific inactivating yeasts, white wines, oxidation, aroma   

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.