terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Abstract

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

In this work, the effects of the addition of a commercial preparation derived from inactivated yeasts (IDY) on the chemical composition and sensory profile of white wines made from three varieties (Tempranillo Blanco, Garnacha Blanca and Viura) from the D.O.Ca. La Rioja (Spain) were evaluated. The IDY preparation containing glutathione (Glutastar, Lallemand, S.L.) was added at a dose of 30 g/Hl to the racked musts.

The obtained results showed differences depending on the grape variety. In Tempranillo Blanco and Viura, the addition of IDY increased the concentration of glutathione and decreased the concentration of catechins and hydroxycinnamic acids. In Viura, some aromatic compounds (amyl alcohols, isoamyl acetate, hexyl acetate and octanoic acid) increased.Overall, the IDY treatment did not influence the organoleptic characteristics of the wines, with slight variety-related modifications in the aromatic profile.

The addition of IDY could be an interesting alternative to slow down oxidation and preserve the aroma of white wines, but its effects have a variety dependence. In this study, the highest antioxidant efficacy was obtained in the Viura variety.

Acknowledgements: This study was co-financed by the European Regional Development Fund (ERDF), granted to the Autonomous Community of La Rioja, within the ERDF Operational Program (2021-2027).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juana Martinez 1, Elisa Baroja1, Lucía González-Arenzana

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja). Finca La Grajera, Carretera de Burgos, km 6, 26071 Logroño, La Rioja, España)

Contact the author*

Keywords

glutathione, specific inactivating yeasts, white wines, oxidation, aroma   

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.