terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Abstract

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

In this work, the effects of the addition of a commercial preparation derived from inactivated yeasts (IDY) on the chemical composition and sensory profile of white wines made from three varieties (Tempranillo Blanco, Garnacha Blanca and Viura) from the D.O.Ca. La Rioja (Spain) were evaluated. The IDY preparation containing glutathione (Glutastar, Lallemand, S.L.) was added at a dose of 30 g/Hl to the racked musts.

The obtained results showed differences depending on the grape variety. In Tempranillo Blanco and Viura, the addition of IDY increased the concentration of glutathione and decreased the concentration of catechins and hydroxycinnamic acids. In Viura, some aromatic compounds (amyl alcohols, isoamyl acetate, hexyl acetate and octanoic acid) increased.Overall, the IDY treatment did not influence the organoleptic characteristics of the wines, with slight variety-related modifications in the aromatic profile.

The addition of IDY could be an interesting alternative to slow down oxidation and preserve the aroma of white wines, but its effects have a variety dependence. In this study, the highest antioxidant efficacy was obtained in the Viura variety.

Acknowledgements: This study was co-financed by the European Regional Development Fund (ERDF), granted to the Autonomous Community of La Rioja, within the ERDF Operational Program (2021-2027).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juana Martinez 1, Elisa Baroja1, Lucía González-Arenzana

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja). Finca La Grajera, Carretera de Burgos, km 6, 26071 Logroño, La Rioja, España)

Contact the author*

Keywords

glutathione, specific inactivating yeasts, white wines, oxidation, aroma   

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.