terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

Abstract

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time. Additionally, juice/wine samples were taken at days 0, 2, 4, and 6 as to evaluate their chemical composition with an emphasis on phenolics. Our results showed clear differences in dissolved oxygen depending on the aeration regime employed. Like so, phenolic composition varied between samples, but less differences were observed among aerations regimes. The highest intensity and frequency of air injections produced the highest peaks of oxygen dilution, but not the highest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration. Differences in phenolic compounds among treatments were mostly mediated by temperature changes during fermentation. However, these variations tend to equilibrate by the end of the fermentation. Based on these results, more research is being conducted to keep characterizing the extraction kinetics, color, and phenolic evolution of red wines fermented with air injections.

Acknowledgements: Thanks to ANID-Fondecyt grants 1190301 and 1231484 for financing this study, and to Viña Santa Carolina for allowing us to work at their winery. PPM also thanks ANID for her doctoral scholarship, “Beca de doctorado nacional”.

References:

1)  Day MP. et al. (2021) Aeration of Vitis vinifera Shiraz fermentation and its effect on wine chemical composition and sensory attributes. Aust. J. Grape Wine Res., 27: 360-377, DOI 10.1111/ajgw.12490

2)  Gambuti A. et al. (2018) Evolution of Sangiovese wines with varied tannin and anthocyanin ratios during oxidative aging. Front. Chem., 6 (march): 1-11, DOI 10.3389/fchem.2018.00063

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

V. Felipe Laurie1*, Paula A. Peña-Martínez1

1Facultad de Ciencias Agrarias, Universidad de Talca, Chile. Av. Lircay s/n, Talca, Chile. 346000

Contact the author*

Keywords

red wine fermentation, airmixing, air, dissolved oxygen, phenolic compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.