terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

Abstract

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time. Additionally, juice/wine samples were taken at days 0, 2, 4, and 6 as to evaluate their chemical composition with an emphasis on phenolics. Our results showed clear differences in dissolved oxygen depending on the aeration regime employed. Like so, phenolic composition varied between samples, but less differences were observed among aerations regimes. The highest intensity and frequency of air injections produced the highest peaks of oxygen dilution, but not the highest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration. Differences in phenolic compounds among treatments were mostly mediated by temperature changes during fermentation. However, these variations tend to equilibrate by the end of the fermentation. Based on these results, more research is being conducted to keep characterizing the extraction kinetics, color, and phenolic evolution of red wines fermented with air injections.

Acknowledgements: Thanks to ANID-Fondecyt grants 1190301 and 1231484 for financing this study, and to Viña Santa Carolina for allowing us to work at their winery. PPM also thanks ANID for her doctoral scholarship, “Beca de doctorado nacional”.

References:

1)  Day MP. et al. (2021) Aeration of Vitis vinifera Shiraz fermentation and its effect on wine chemical composition and sensory attributes. Aust. J. Grape Wine Res., 27: 360-377, DOI 10.1111/ajgw.12490

2)  Gambuti A. et al. (2018) Evolution of Sangiovese wines with varied tannin and anthocyanin ratios during oxidative aging. Front. Chem., 6 (march): 1-11, DOI 10.3389/fchem.2018.00063

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

V. Felipe Laurie1*, Paula A. Peña-Martínez1

1Facultad de Ciencias Agrarias, Universidad de Talca, Chile. Av. Lircay s/n, Talca, Chile. 346000

Contact the author*

Keywords

red wine fermentation, airmixing, air, dissolved oxygen, phenolic compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.