terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 First results on the chemical composition of red wines from the pressing of marc

First results on the chemical composition of red wines from the pressing of marc

Abstract

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

To achieve this objective, quantification were performed in 50 press wines and their associated free-run wines. Wines were monovarietal batch from two of the main grape varieties vinified in Bordeaux:  cabernet-sauvignon and merlot. The vintage was 2021 and the vines were located in Saint-Estèphe (Médoc France). A selection of analyzes was carried out. For the aromatic composition: dimethyl sulfide (DMS) and its potential (HS-SPME-GC-MS); higher alcohols (GC-FID); and 32 esters (HS-SPME-GC-MS) were measured. Regarding the analysis of phenolic compounds, anthocyanin monomers (HPLC-UV) and flavanols (HPLC-fluo) were determined. Indices such as IPT, CieLAB, pH, AT were also measured. As expected, the results showed a significant difference between the two grape varieties cabernet-sauvignon and merlot. For the aromatic compounds, the press wines of the two grape varieties were more concentrated than the free run wines, and for the phenolic compounds, the press wines were more concentrated in total tannins and flavanols.

In conclusion, the study of a certain number of aromatic and phenolic compounds in press wines, as well as the associated free-run wines, made it possible to participate in the constitution of a first database. This also shows a contradiction between the results obtained and the declarations of the few old studies mentioning press wines.

1)  PEYNAUD, E Knowledge and work of wine. 1971. 1e éd, p179-180

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Larose, Margot1 ; Decup, Vincent2 ; Jourdes, Michael1; Marchand, Stéphanie1

1Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33882 Villenave d’Ornon, France
2Château Montrose, Saint-estèphe, France

Contact the author*

Keywords

aromatic composition, phenolic composition, press wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.