terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 First results on the chemical composition of red wines from the pressing of marc

First results on the chemical composition of red wines from the pressing of marc

Abstract

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

To achieve this objective, quantification were performed in 50 press wines and their associated free-run wines. Wines were monovarietal batch from two of the main grape varieties vinified in Bordeaux:  cabernet-sauvignon and merlot. The vintage was 2021 and the vines were located in Saint-Estèphe (Médoc France). A selection of analyzes was carried out. For the aromatic composition: dimethyl sulfide (DMS) and its potential (HS-SPME-GC-MS); higher alcohols (GC-FID); and 32 esters (HS-SPME-GC-MS) were measured. Regarding the analysis of phenolic compounds, anthocyanin monomers (HPLC-UV) and flavanols (HPLC-fluo) were determined. Indices such as IPT, CieLAB, pH, AT were also measured. As expected, the results showed a significant difference between the two grape varieties cabernet-sauvignon and merlot. For the aromatic compounds, the press wines of the two grape varieties were more concentrated than the free run wines, and for the phenolic compounds, the press wines were more concentrated in total tannins and flavanols.

In conclusion, the study of a certain number of aromatic and phenolic compounds in press wines, as well as the associated free-run wines, made it possible to participate in the constitution of a first database. This also shows a contradiction between the results obtained and the declarations of the few old studies mentioning press wines.

1)  PEYNAUD, E Knowledge and work of wine. 1971. 1e éd, p179-180

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Larose, Margot1 ; Decup, Vincent2 ; Jourdes, Michael1; Marchand, Stéphanie1

1Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33882 Villenave d’Ornon, France
2Château Montrose, Saint-estèphe, France

Contact the author*

Keywords

aromatic composition, phenolic composition, press wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.