terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 First results on the chemical composition of red wines from the pressing of marc

First results on the chemical composition of red wines from the pressing of marc

Abstract

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

To achieve this objective, quantification were performed in 50 press wines and their associated free-run wines. Wines were monovarietal batch from two of the main grape varieties vinified in Bordeaux:  cabernet-sauvignon and merlot. The vintage was 2021 and the vines were located in Saint-Estèphe (Médoc France). A selection of analyzes was carried out. For the aromatic composition: dimethyl sulfide (DMS) and its potential (HS-SPME-GC-MS); higher alcohols (GC-FID); and 32 esters (HS-SPME-GC-MS) were measured. Regarding the analysis of phenolic compounds, anthocyanin monomers (HPLC-UV) and flavanols (HPLC-fluo) were determined. Indices such as IPT, CieLAB, pH, AT were also measured. As expected, the results showed a significant difference between the two grape varieties cabernet-sauvignon and merlot. For the aromatic compounds, the press wines of the two grape varieties were more concentrated than the free run wines, and for the phenolic compounds, the press wines were more concentrated in total tannins and flavanols.

In conclusion, the study of a certain number of aromatic and phenolic compounds in press wines, as well as the associated free-run wines, made it possible to participate in the constitution of a first database. This also shows a contradiction between the results obtained and the declarations of the few old studies mentioning press wines.

1)  PEYNAUD, E Knowledge and work of wine. 1971. 1e éd, p179-180

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Larose, Margot1 ; Decup, Vincent2 ; Jourdes, Michael1; Marchand, Stéphanie1

1Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33882 Villenave d’Ornon, France
2Château Montrose, Saint-estèphe, France

Contact the author*

Keywords

aromatic composition, phenolic composition, press wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].