terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 First results on the chemical composition of red wines from the pressing of marc

First results on the chemical composition of red wines from the pressing of marc

Abstract

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

To achieve this objective, quantification were performed in 50 press wines and their associated free-run wines. Wines were monovarietal batch from two of the main grape varieties vinified in Bordeaux:  cabernet-sauvignon and merlot. The vintage was 2021 and the vines were located in Saint-Estèphe (Médoc France). A selection of analyzes was carried out. For the aromatic composition: dimethyl sulfide (DMS) and its potential (HS-SPME-GC-MS); higher alcohols (GC-FID); and 32 esters (HS-SPME-GC-MS) were measured. Regarding the analysis of phenolic compounds, anthocyanin monomers (HPLC-UV) and flavanols (HPLC-fluo) were determined. Indices such as IPT, CieLAB, pH, AT were also measured. As expected, the results showed a significant difference between the two grape varieties cabernet-sauvignon and merlot. For the aromatic compounds, the press wines of the two grape varieties were more concentrated than the free run wines, and for the phenolic compounds, the press wines were more concentrated in total tannins and flavanols.

In conclusion, the study of a certain number of aromatic and phenolic compounds in press wines, as well as the associated free-run wines, made it possible to participate in the constitution of a first database. This also shows a contradiction between the results obtained and the declarations of the few old studies mentioning press wines.

1)  PEYNAUD, E Knowledge and work of wine. 1971. 1e éd, p179-180

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Larose, Margot1 ; Decup, Vincent2 ; Jourdes, Michael1; Marchand, Stéphanie1

1Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33882 Villenave d’Ornon, France
2Château Montrose, Saint-estèphe, France

Contact the author*

Keywords

aromatic composition, phenolic composition, press wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.