terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 First results on the chemical composition of red wines from the pressing of marc

First results on the chemical composition of red wines from the pressing of marc

Abstract

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

To achieve this objective, quantification were performed in 50 press wines and their associated free-run wines. Wines were monovarietal batch from two of the main grape varieties vinified in Bordeaux:  cabernet-sauvignon and merlot. The vintage was 2021 and the vines were located in Saint-Estèphe (Médoc France). A selection of analyzes was carried out. For the aromatic composition: dimethyl sulfide (DMS) and its potential (HS-SPME-GC-MS); higher alcohols (GC-FID); and 32 esters (HS-SPME-GC-MS) were measured. Regarding the analysis of phenolic compounds, anthocyanin monomers (HPLC-UV) and flavanols (HPLC-fluo) were determined. Indices such as IPT, CieLAB, pH, AT were also measured. As expected, the results showed a significant difference between the two grape varieties cabernet-sauvignon and merlot. For the aromatic compounds, the press wines of the two grape varieties were more concentrated than the free run wines, and for the phenolic compounds, the press wines were more concentrated in total tannins and flavanols.

In conclusion, the study of a certain number of aromatic and phenolic compounds in press wines, as well as the associated free-run wines, made it possible to participate in the constitution of a first database. This also shows a contradiction between the results obtained and the declarations of the few old studies mentioning press wines.

1)  PEYNAUD, E Knowledge and work of wine. 1971. 1e éd, p179-180

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Larose, Margot1 ; Decup, Vincent2 ; Jourdes, Michael1; Marchand, Stéphanie1

1Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33882 Villenave d’Ornon, France
2Château Montrose, Saint-estèphe, France

Contact the author*

Keywords

aromatic composition, phenolic composition, press wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Moderate wine consumption – part of a balanced diet or a health risk?

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide. The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.