terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of riboflavin on the longevity of white and rosé wines

Effect of riboflavin on the longevity of white and rosé wines

Abstract

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF). Other causes of wine aroma deterioration during aging occurs during transport or storage. For example, temperature changes registered in this period can affect the sealing of the bottles with the consequent air inlet. These quality losses imply the need to know in depth the photochemical effect and compared it to other deterioration causes during bottle aging, such as oxygen or temperature. This knowledge is necessary to improve the longevity and quality of white and rosé wines.

 

This work studies the influence of riboflavin (RBF) level on the appearance of aromatic deviations (ADs) in white and rosé wines. Also, determine if this influence is modified by different stimuli (light, oxygen and temperature). For this, a white and a rosé wine at 3 levels of RBF were subjected to 7 different treatments (response to light in anoxia, response to oxygen in darkness, light+oxygen, light+oxygen at 35°C, accelerated reduction at 50°C in anoxia, thermal stability at 75°C in anoxia, control at 4°C in anoxia and darkness) with the aim of accelerating the aging of the wines and causing the appearance of DAs. A sorting task sensory test was carried out to group and describe the samples organoleptically. The quantification of volatile compounds in relation to the oxidation-reduction processes (volatile sulfur compounds1, polyfunctional mercaptans2 and Strecker aldehydes3) was also carried out in some selected samples. Several technological-sensory spaces different from the initial wine stored in anoxia, in the dark and at 4 °C have been detected. Different sensory changes were found depending on whether light hits the wine in the presence or absence of oxygen in both wines.

Acknowledgements: LAAE acknowledges the support of DGA (T29), European Social Fund and the CORK2WINE project of the CIEN-CDTI 2019 Strategic Program. M.B. thanks the AEI and the MICIU for her postdoctoral grant IJC2018-037830-I. This work has received a Research Grant from the IER of the Autonomous Community of La Rioja, in its 2022 call.

References:

1)  Ontañón I. et al. (2019) Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. J. Chom. A, 1596: 152-160, DOI 10.1016/j.chroma.2019.02.052

2)  Vichi S. et al. (2015) Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry. Food Chem., 175: 401-408, DOI 10.1016/j.foodchem.2014.11.095

3)  Castejón-Musulén O. et al. (2022) Accurate quantitative determination of the total amounts of Strecker

aldehydes contained in wine. Assessment of their presence in table wines. Food Res. Int., 162: 112125, DOI 10.1016/j.foodres.2022.112125

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Bueno*, A. de-la-Fuente-Blanco; I. Ontañón, C. Peña, V. Ferreira, A. Escudero

Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain

Contact the author*

Keywords

riboflavin, white wine, rosé wine, light, aging, oxygen, temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.