terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of riboflavin on the longevity of white and rosé wines

Effect of riboflavin on the longevity of white and rosé wines

Abstract

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF). Other causes of wine aroma deterioration during aging occurs during transport or storage. For example, temperature changes registered in this period can affect the sealing of the bottles with the consequent air inlet. These quality losses imply the need to know in depth the photochemical effect and compared it to other deterioration causes during bottle aging, such as oxygen or temperature. This knowledge is necessary to improve the longevity and quality of white and rosé wines.

 

This work studies the influence of riboflavin (RBF) level on the appearance of aromatic deviations (ADs) in white and rosé wines. Also, determine if this influence is modified by different stimuli (light, oxygen and temperature). For this, a white and a rosé wine at 3 levels of RBF were subjected to 7 different treatments (response to light in anoxia, response to oxygen in darkness, light+oxygen, light+oxygen at 35°C, accelerated reduction at 50°C in anoxia, thermal stability at 75°C in anoxia, control at 4°C in anoxia and darkness) with the aim of accelerating the aging of the wines and causing the appearance of DAs. A sorting task sensory test was carried out to group and describe the samples organoleptically. The quantification of volatile compounds in relation to the oxidation-reduction processes (volatile sulfur compounds1, polyfunctional mercaptans2 and Strecker aldehydes3) was also carried out in some selected samples. Several technological-sensory spaces different from the initial wine stored in anoxia, in the dark and at 4 °C have been detected. Different sensory changes were found depending on whether light hits the wine in the presence or absence of oxygen in both wines.

Acknowledgements: LAAE acknowledges the support of DGA (T29), European Social Fund and the CORK2WINE project of the CIEN-CDTI 2019 Strategic Program. M.B. thanks the AEI and the MICIU for her postdoctoral grant IJC2018-037830-I. This work has received a Research Grant from the IER of the Autonomous Community of La Rioja, in its 2022 call.

References:

1)  Ontañón I. et al. (2019) Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. J. Chom. A, 1596: 152-160, DOI 10.1016/j.chroma.2019.02.052

2)  Vichi S. et al. (2015) Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry. Food Chem., 175: 401-408, DOI 10.1016/j.foodchem.2014.11.095

3)  Castejón-Musulén O. et al. (2022) Accurate quantitative determination of the total amounts of Strecker

aldehydes contained in wine. Assessment of their presence in table wines. Food Res. Int., 162: 112125, DOI 10.1016/j.foodres.2022.112125

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Bueno*, A. de-la-Fuente-Blanco; I. Ontañón, C. Peña, V. Ferreira, A. Escudero

Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain

Contact the author*

Keywords

riboflavin, white wine, rosé wine, light, aging, oxygen, temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.