terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of riboflavin on the longevity of white and rosé wines

Effect of riboflavin on the longevity of white and rosé wines

Abstract

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF). Other causes of wine aroma deterioration during aging occurs during transport or storage. For example, temperature changes registered in this period can affect the sealing of the bottles with the consequent air inlet. These quality losses imply the need to know in depth the photochemical effect and compared it to other deterioration causes during bottle aging, such as oxygen or temperature. This knowledge is necessary to improve the longevity and quality of white and rosé wines.

 

This work studies the influence of riboflavin (RBF) level on the appearance of aromatic deviations (ADs) in white and rosé wines. Also, determine if this influence is modified by different stimuli (light, oxygen and temperature). For this, a white and a rosé wine at 3 levels of RBF were subjected to 7 different treatments (response to light in anoxia, response to oxygen in darkness, light+oxygen, light+oxygen at 35°C, accelerated reduction at 50°C in anoxia, thermal stability at 75°C in anoxia, control at 4°C in anoxia and darkness) with the aim of accelerating the aging of the wines and causing the appearance of DAs. A sorting task sensory test was carried out to group and describe the samples organoleptically. The quantification of volatile compounds in relation to the oxidation-reduction processes (volatile sulfur compounds1, polyfunctional mercaptans2 and Strecker aldehydes3) was also carried out in some selected samples. Several technological-sensory spaces different from the initial wine stored in anoxia, in the dark and at 4 °C have been detected. Different sensory changes were found depending on whether light hits the wine in the presence or absence of oxygen in both wines.

Acknowledgements: LAAE acknowledges the support of DGA (T29), European Social Fund and the CORK2WINE project of the CIEN-CDTI 2019 Strategic Program. M.B. thanks the AEI and the MICIU for her postdoctoral grant IJC2018-037830-I. This work has received a Research Grant from the IER of the Autonomous Community of La Rioja, in its 2022 call.

References:

1)  Ontañón I. et al. (2019) Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. J. Chom. A, 1596: 152-160, DOI 10.1016/j.chroma.2019.02.052

2)  Vichi S. et al. (2015) Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry. Food Chem., 175: 401-408, DOI 10.1016/j.foodchem.2014.11.095

3)  Castejón-Musulén O. et al. (2022) Accurate quantitative determination of the total amounts of Strecker

aldehydes contained in wine. Assessment of their presence in table wines. Food Res. Int., 162: 112125, DOI 10.1016/j.foodres.2022.112125

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Bueno*, A. de-la-Fuente-Blanco; I. Ontañón, C. Peña, V. Ferreira, A. Escudero

Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain

Contact the author*

Keywords

riboflavin, white wine, rosé wine, light, aging, oxygen, temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.