terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Distribution and sensory impact of new oak wood-derived compounds in wines

Distribution and sensory impact of new oak wood-derived compounds in wines

Abstract

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin). However, these compounds only partially explain oak wood aroma and its contribution to wine richness and complexity. Recently, two new unsaturated aldehydes have been identified as being responsible for the “woody” character of oak wood (Quercus petraea): (2E,4E,6Z)-nonatrienal (1) reminiscent of puff pastry odor and trans-4,5-epoxy-(E)-2-decenal (2) reminiscent of metal odor. These compounds are quantified for the first time in wood, wines and spirits by using SPE extraction and optimized GC-MS NCI (NH3) separation and detection. Their olfactory detection thresholds are 16 ng/L (1) and 60 ng/L (2) in a model wine solution. We demonstrated that their distribution in oak wood samples was impacted by toasting treatments and was ranged from some ng/g to 85 ng/g for (1) and 210 ng/g for (2). Analysis of 66 wines revealed those highest levels of (1) (441.3 ng/L) and (2) (524.4 ng/L) were found in a red wine and a white wine, respectively. Moreover, at these levels, these aldehydes modify the balance of the fruity expression in both types of wine. A further study highlighted the role of fatty acids, principally linoleic and α-linolenic acids, as aroma precursors. Additional results concerning these precursors in oak wood and wine were also discussed. They provide new insights into the contribution of oak wood ageing to the complexity of wine aroma.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marie Courregelongue1,2,3*, Alexandre Pons1,2,3

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

3Tonnellerie Seguin Moreau, Merpins, France

Contact the author*

Keywords

trans-4,5-epoxy-(E)-2-decenal, 2,4,6-nonatrienal, oak wood maturation, fruity aroma modulation, fatty acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.