terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Distribution and sensory impact of new oak wood-derived compounds in wines

Distribution and sensory impact of new oak wood-derived compounds in wines

Abstract

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin). However, these compounds only partially explain oak wood aroma and its contribution to wine richness and complexity. Recently, two new unsaturated aldehydes have been identified as being responsible for the “woody” character of oak wood (Quercus petraea): (2E,4E,6Z)-nonatrienal (1) reminiscent of puff pastry odor and trans-4,5-epoxy-(E)-2-decenal (2) reminiscent of metal odor. These compounds are quantified for the first time in wood, wines and spirits by using SPE extraction and optimized GC-MS NCI (NH3) separation and detection. Their olfactory detection thresholds are 16 ng/L (1) and 60 ng/L (2) in a model wine solution. We demonstrated that their distribution in oak wood samples was impacted by toasting treatments and was ranged from some ng/g to 85 ng/g for (1) and 210 ng/g for (2). Analysis of 66 wines revealed those highest levels of (1) (441.3 ng/L) and (2) (524.4 ng/L) were found in a red wine and a white wine, respectively. Moreover, at these levels, these aldehydes modify the balance of the fruity expression in both types of wine. A further study highlighted the role of fatty acids, principally linoleic and α-linolenic acids, as aroma precursors. Additional results concerning these precursors in oak wood and wine were also discussed. They provide new insights into the contribution of oak wood ageing to the complexity of wine aroma.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marie Courregelongue1,2,3*, Alexandre Pons1,2,3

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

3Tonnellerie Seguin Moreau, Merpins, France

Contact the author*

Keywords

trans-4,5-epoxy-(E)-2-decenal, 2,4,6-nonatrienal, oak wood maturation, fruity aroma modulation, fatty acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.