terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Distribution and sensory impact of new oak wood-derived compounds in wines

Distribution and sensory impact of new oak wood-derived compounds in wines

Abstract

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin). However, these compounds only partially explain oak wood aroma and its contribution to wine richness and complexity. Recently, two new unsaturated aldehydes have been identified as being responsible for the “woody” character of oak wood (Quercus petraea): (2E,4E,6Z)-nonatrienal (1) reminiscent of puff pastry odor and trans-4,5-epoxy-(E)-2-decenal (2) reminiscent of metal odor. These compounds are quantified for the first time in wood, wines and spirits by using SPE extraction and optimized GC-MS NCI (NH3) separation and detection. Their olfactory detection thresholds are 16 ng/L (1) and 60 ng/L (2) in a model wine solution. We demonstrated that their distribution in oak wood samples was impacted by toasting treatments and was ranged from some ng/g to 85 ng/g for (1) and 210 ng/g for (2). Analysis of 66 wines revealed those highest levels of (1) (441.3 ng/L) and (2) (524.4 ng/L) were found in a red wine and a white wine, respectively. Moreover, at these levels, these aldehydes modify the balance of the fruity expression in both types of wine. A further study highlighted the role of fatty acids, principally linoleic and α-linolenic acids, as aroma precursors. Additional results concerning these precursors in oak wood and wine were also discussed. They provide new insights into the contribution of oak wood ageing to the complexity of wine aroma.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marie Courregelongue1,2,3*, Alexandre Pons1,2,3

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

3Tonnellerie Seguin Moreau, Merpins, France

Contact the author*

Keywords

trans-4,5-epoxy-(E)-2-decenal, 2,4,6-nonatrienal, oak wood maturation, fruity aroma modulation, fatty acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.