terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Abstract

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022. Standard parameters of wine and the presence of biogenic amines were determined using OIV methodology. Residues of fungicides and insecticides were assessed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Volatile aroma compounds were extracted by LLE and determined by GC-MS. Microbiological control of the wines by filtration allowed to detect the presence of microorganisms and their potential risk on wine spoilage. The results confirmed the diversity of Ribeiro wines and their chemical quality at both desirable properties and health concerning. Thus, volatile composition analysis allowed to observe differences among vintages and valleys. The average content of biogenic amines was 4.89 mg/L, and only 12% of the samples exceeded 10 mg/L. Residues of authorized pesticides were often detected in most of wines at concentrations above 10 mg Kg-1, but below the maximum residues limits (MRLs) defined by the EU in vinification grapes. In addition, all wines were analyzed by 1H NMR spectroscopy and a preliminary model of the DO. Ribeiro was built with the spectra of white wines.

Acknowledgements: Project AC2021E-02, Consellería do Medio Rural – Xunta de Galicia with funds from FEADER, MAPAMA and CCAA Galicia.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Pilar Blanco1*, Mar Vilanova2, Elvira Soto1, Bianca S. Costa2, Eva López-Rituerto3, Victoria Fernández-Fernández4, Isaac Rodriguez 4

1Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428, Leiro-Ourense
2Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Km. 6. 26007 Logroño
3Estación Enológica de Haro, C\ Bretón de los Herreros, 4. 26200 Haro (La Rioja)
4Universidade de Santiago de Compostela (USC)-Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Constantino Candeira s/n, Campus Sur/Campus Vida, 15782 Santiago de Compostela

Contact the author*

Keywords

DOP Ribeiro wines, volatiles, residues, biogenic amines, microbiological control

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.