terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Abstract

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022. Standard parameters of wine and the presence of biogenic amines were determined using OIV methodology. Residues of fungicides and insecticides were assessed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Volatile aroma compounds were extracted by LLE and determined by GC-MS. Microbiological control of the wines by filtration allowed to detect the presence of microorganisms and their potential risk on wine spoilage. The results confirmed the diversity of Ribeiro wines and their chemical quality at both desirable properties and health concerning. Thus, volatile composition analysis allowed to observe differences among vintages and valleys. The average content of biogenic amines was 4.89 mg/L, and only 12% of the samples exceeded 10 mg/L. Residues of authorized pesticides were often detected in most of wines at concentrations above 10 mg Kg-1, but below the maximum residues limits (MRLs) defined by the EU in vinification grapes. In addition, all wines were analyzed by 1H NMR spectroscopy and a preliminary model of the DO. Ribeiro was built with the spectra of white wines.

Acknowledgements: Project AC2021E-02, Consellería do Medio Rural – Xunta de Galicia with funds from FEADER, MAPAMA and CCAA Galicia.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Pilar Blanco1*, Mar Vilanova2, Elvira Soto1, Bianca S. Costa2, Eva López-Rituerto3, Victoria Fernández-Fernández4, Isaac Rodriguez 4

1Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428, Leiro-Ourense
2Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Km. 6. 26007 Logroño
3Estación Enológica de Haro, C\ Bretón de los Herreros, 4. 26200 Haro (La Rioja)
4Universidade de Santiago de Compostela (USC)-Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Constantino Candeira s/n, Campus Sur/Campus Vida, 15782 Santiago de Compostela

Contact the author*

Keywords

DOP Ribeiro wines, volatiles, residues, biogenic amines, microbiological control

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.