terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Abstract

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers. The sorting task evidenced that the main sensory differences perceived were between Rioja Oriental and Rioja Alta/Rioja Alavesa. These differences were mainly attributed to colour intensity, body/structure and liquorice aroma, which were perceived with higher intensity in wines from Rioja Alta/Rioja Alavesa than in those from Rioja Oriental. The free description task showed shared sensory profiles but also specific sensory profiles for each of the three regions. Rioja Alta and Alavesa display a common sensory profile characterised with high colour intensity and purple-violet hue, high aroma intensity with fresh fruit and lactic aromas and high acidity. Similarly, Rioja Alavesa and Oriental share a prototype of wine described with low colour and medium aromatic intensities, grassy and fresh aroma, and powerful tannin with low acidity. Regarding specific characteristics, Rioja Alta presents a unique and typical profile with high colour intensity, ripe fruit, spicy and balsamic/mint aromas with powerful tannins. Rioja Alavesa´s typical profile is characterised by medium colour intensity, gummy candy, fresh fruit, lactic and floral aroma, with silky, and mellow mouthfeel. The characteristic profile for Rioja Oriental was moderate colour intensity with ruby-garnet hue, dried fruit, jammy fruit, alcohol and spicy aromas and light in mouth. This project is of particular importance since it is the first-time scientific research tries to distinguish between the three subregions of DOCa Rioja and attempts to provide a sensory identity, contributing at the same time to a better understanding of the notion of typicity in wine.

Acknowledgements: This project was funded by the Instituto de Estudios Riojanos (call 2022).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. Iosofidis1, M. Gonzalez-Hernandez1*, C. Castillo Rio1, P. Fernández-Zurbano1, M. P. Sáenz-Navajas1

1Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja). Departamento de Enología, Logroño, La Rioja, Spain

Contact the author*

Keywords

designated origin, red wine, typicity, free description, sorting task

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.