terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Abstract

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body. This work updates the scientific evidence in relation to the activities of GP in the intestinal environment. The review includes publications from 2010 onwards, sourced from main online databases. After this peer review, we have identified six main targets of potential bioactivity of GP in the gut: (i) nutrient digestion and absorption, (ii) enteroendocrine gut hormones release and satiety, (iii) gut morphology, (iv) intestinal barrier integrity, (v) intestinal inflammatory and oxidative status, and (vi) gut microbiome (see figure) [1].

Although the current state of knowledge does not clearly define a primary mechanism of action for GP at the intestinal level, it is clearly stated that GP’s overall effect reinforces gut function as a crucial first line of defense against multiple disorders.  

References:

1)  Taladrid D. et al (2023) Grape pomace as a cardiometabolic health-promoting ingredient: activity in the intestinal environment. Antioxidants,12: 979, DOI 10.3390/antiox12040979

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Diego Taladrid1, Miguel Rebollo-Hernanz1,2, Maria A. Martin-Cabrejas1,2, M. Victoria Moreno-Arribas1, Begoña Bartolomé1*

1Institute of Food Science Research (CIAL, CSIC-UAM), c/ Nicolás Cabrera, 9, Campus de Cantoblanco, 28049, Madrid, Spain
2Department of Agricultural Chemistry and Food Science, Faculty of Science, c/ Francisco Tomás y Va-liente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain

Contact the author*

Keywords

grape pomace, (poly)phenols, dietary fiber, intestinal environment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.