terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Abstract

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body. This work updates the scientific evidence in relation to the activities of GP in the intestinal environment. The review includes publications from 2010 onwards, sourced from main online databases. After this peer review, we have identified six main targets of potential bioactivity of GP in the gut: (i) nutrient digestion and absorption, (ii) enteroendocrine gut hormones release and satiety, (iii) gut morphology, (iv) intestinal barrier integrity, (v) intestinal inflammatory and oxidative status, and (vi) gut microbiome (see figure) [1].

Although the current state of knowledge does not clearly define a primary mechanism of action for GP at the intestinal level, it is clearly stated that GP’s overall effect reinforces gut function as a crucial first line of defense against multiple disorders.  

References:

1)  Taladrid D. et al (2023) Grape pomace as a cardiometabolic health-promoting ingredient: activity in the intestinal environment. Antioxidants,12: 979, DOI 10.3390/antiox12040979

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Diego Taladrid1, Miguel Rebollo-Hernanz1,2, Maria A. Martin-Cabrejas1,2, M. Victoria Moreno-Arribas1, Begoña Bartolomé1*

1Institute of Food Science Research (CIAL, CSIC-UAM), c/ Nicolás Cabrera, 9, Campus de Cantoblanco, 28049, Madrid, Spain
2Department of Agricultural Chemistry and Food Science, Faculty of Science, c/ Francisco Tomás y Va-liente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain

Contact the author*

Keywords

grape pomace, (poly)phenols, dietary fiber, intestinal environment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.