terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Abstract

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body. This work updates the scientific evidence in relation to the activities of GP in the intestinal environment. The review includes publications from 2010 onwards, sourced from main online databases. After this peer review, we have identified six main targets of potential bioactivity of GP in the gut: (i) nutrient digestion and absorption, (ii) enteroendocrine gut hormones release and satiety, (iii) gut morphology, (iv) intestinal barrier integrity, (v) intestinal inflammatory and oxidative status, and (vi) gut microbiome (see figure) [1].

Although the current state of knowledge does not clearly define a primary mechanism of action for GP at the intestinal level, it is clearly stated that GP’s overall effect reinforces gut function as a crucial first line of defense against multiple disorders.  

References:

1)  Taladrid D. et al (2023) Grape pomace as a cardiometabolic health-promoting ingredient: activity in the intestinal environment. Antioxidants,12: 979, DOI 10.3390/antiox12040979

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Diego Taladrid1, Miguel Rebollo-Hernanz1,2, Maria A. Martin-Cabrejas1,2, M. Victoria Moreno-Arribas1, Begoña Bartolomé1*

1Institute of Food Science Research (CIAL, CSIC-UAM), c/ Nicolás Cabrera, 9, Campus de Cantoblanco, 28049, Madrid, Spain
2Department of Agricultural Chemistry and Food Science, Faculty of Science, c/ Francisco Tomás y Va-liente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain

Contact the author*

Keywords

grape pomace, (poly)phenols, dietary fiber, intestinal environment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.