terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

Abstract

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process. PS extracts were obtained following the method previously developed by Canalejo et al.[1], and the monosaccharide composition were evaluated by GC-MS[2] to determine the PS families which are PS rich in arabinose and galactose (PRAG), mannans (MN), rhamnogalacturonans of type II (RG-II), homogalacturonans (HG) and non pectic polysaccharides (NPP). Titratable acidity (TA), Brix degree and high molecular weight PS (HMWP) were also determined. Statistically significant differences were found in the PS families between different varietal grape pomaces and even within the same grape variety. The extracts from red and white grape varieties were separated in the figure defined by the first two principal components, which explained 66.1% of the total variance. The ones obtained from white grapes are mainly related to the TA, HG, MN, PRAG and HMWP, while those from red varieties are close to the Brix degree and RG-II. Only Cabernet Sauvignon variety is correlated mainly with the TA, HG and NPP as white grape varieties. To sum up, both the type of grape and the grape variety are important factors with influence PS composition of grape pomaces.

Acknowledgements: The authors would like to thank the AEI and the MICINN for the funding provided for this study through the project PID2021-123361OR-C21 (with FEADER funds). M. C-F. also thanks the MICINN and AEI for funding her predoctoral contract (PRE2020-094464).

References:

1) Canalejo et al. (2021) Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem., 365: 130445, DOI 10.1016/j.foodchem.2021.130445

2) Guadalupe et al. (2012) Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC). Food Chem., 131: 367-374, DOI 10.1016/j.foodchem.2011.08.049

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María Curiel-Fernández1*, Zenaida Guadalupe2, Belén Ayestarán2, Silvia Pérez-Magariño1

1Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.
2ICVV-Universidad de La Rioja, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain.

Contact the author*

Keywords

polysaccharides, pomace, varietal grapes, by-products, revaluation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.