terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Abstract

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1]. The aim of this work is to select an extract from agri-food byproducts capable of protecting rosé wine from light effects without altering its color and organoleptic properties. Firstly, 10 extracts (artichoke, coffee, cacao husk, coffee chaff, peanut husk, tangerine peel, apple peel, spent commercial black chai tea and lemon ginger tea, pumpkin peel) were selected based mainly on their sun protection factor. These extracts underwent a first test to determine if they change the wine color in a perceptive manner. From this, 4 extracts were selected to be added to rosé wines at two concentrations. The photodegradation assay of these samples by using an irradiation equipment optimized for rosé wines [2] will reveal the efficacy of the extracts as photoprotectors. Also, the sensory analysis will be an important factor to consider.

Acknowledgements: PID2021-1226750OB-C21 (SOLANUM) project founded by the Spanish Ministry of Science and Innovation and FEDER.

References:

  1. Martínez-Inda B. et al. (2023). Valorization of agri-food waste through the extraction of bioactive molecules. Prediction of their sunscreen action. J. Environ. Manage., 325, 116460. DOI: 10.1016/j.jenvman.2022.116460
  2. Moriones J. et al. (2023). Development of an irradiation equipment to accelerate the degradation of rosé wine in Antique Green and Flint bottles. Curr. Res. Food Sci., 6, 100501. DOI: 10.1016/j.crfs.2023.100501

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Blanca Martinez-Inda1*, Irene Esparza1,2, Nerea Jiménez-Moreno1,2, Carmen Ancín-Azpilicueta1,2

Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain

Contact the author*

Keywords

rosé wine, agri-food extracts, sun protection factor, phenolic compounds, photoprotection

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.