terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Abstract

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitrothe bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites. The evaluation of the effects of the intestinal microbiota was carried out using an in vitro Digester of Colonic Fermentation. The fecal microbiota was inoculated, and 100 mL of red wine was added daily for 14 days. For the determination of proanthocyanidins and phenolic metabolites, related, high performance liquid chromatography coupled with mass spectrometry (UHPLC-QqQ-MS/MS) was used. The major phenolic metabolites detected were propionic and acetic acid, and the highest concentrations were detected in the transverse and descending colon, mainly at the end of fermentation process. On the other hand, the main families of microbial proanthocyanidin metabolites detected were valerolactones and benzoic acids mainly between 10-14 days of wine fermentation.

Acknowledgements: IDI-20210434 project. S Yuste has a Margarita Salas postdoctoral grant (funded by the European Union – NextGenerationEU).

References:

1) Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004 May;79(5):727-47.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Yuste S1,2, Motilva MJ1, Viadel Crespo B3, Medina-Trillo C3, Tomás-Cobos L3, Moretón Fraile P4 Rodríguez de Rivera Cremades F4, de Domingo Casado S4

1Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño, Spain
2Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, 25198 Lleida, Spain
3 Ainia. Technological Park of Valencia, Paterna (Valencia), Spain
4 Real Sitio de Ventosilla SA. Gumiel de Mercado, Burgos, Spain

Contact the author*

Keywords

proanthocyanidins, bioaccessibility, intestinal microbiota, wine, UHPLC-QqQ-MS/MS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.