terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Abstract

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitrothe bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites. The evaluation of the effects of the intestinal microbiota was carried out using an in vitro Digester of Colonic Fermentation. The fecal microbiota was inoculated, and 100 mL of red wine was added daily for 14 days. For the determination of proanthocyanidins and phenolic metabolites, related, high performance liquid chromatography coupled with mass spectrometry (UHPLC-QqQ-MS/MS) was used. The major phenolic metabolites detected were propionic and acetic acid, and the highest concentrations were detected in the transverse and descending colon, mainly at the end of fermentation process. On the other hand, the main families of microbial proanthocyanidin metabolites detected were valerolactones and benzoic acids mainly between 10-14 days of wine fermentation.

Acknowledgements: IDI-20210434 project. S Yuste has a Margarita Salas postdoctoral grant (funded by the European Union – NextGenerationEU).

References:

1) Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004 May;79(5):727-47.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Yuste S1,2, Motilva MJ1, Viadel Crespo B3, Medina-Trillo C3, Tomás-Cobos L3, Moretón Fraile P4 Rodríguez de Rivera Cremades F4, de Domingo Casado S4

1Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño, Spain
2Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, 25198 Lleida, Spain
3 Ainia. Technological Park of Valencia, Paterna (Valencia), Spain
4 Real Sitio de Ventosilla SA. Gumiel de Mercado, Burgos, Spain

Contact the author*

Keywords

proanthocyanidins, bioaccessibility, intestinal microbiota, wine, UHPLC-QqQ-MS/MS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.